- -

Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis

Show simple item record

Files in this item

dc.contributor.author Barbero-García, Inés es_ES
dc.contributor.author Lerma, José Luis es_ES
dc.contributor.author Mora Navarro, Joaquin Gaspar es_ES
dc.date.accessioned 2021-07-21T03:31:30Z
dc.date.available 2021-07-21T03:31:30Z
dc.date.issued 2020-08 es_ES
dc.identifier.issn 0924-2716 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169646
dc.description.abstract [EN] Image-based and range-based solutions can be used for the acquisition of valuable data in medicine. However, most of these methods are not valid for non-static patients. Cranial deformation is a problem with high prevalence among infants and image-based solutions can be used to assess the degree of deformation and monitor the evolution of patients. However, it is required to deal with infants normal movement during the assessment in order to avoid sedation. Some high-end multiple-sensor image-based solutions allow the achievement of accurate 3D data for medical applications under unpredicted dynamic conditions in consultation. In this paper, a novel, single photogrammetric smartphone-based solution for cranial deformation assessment is presented. A coded cap is placed on the infant's head and a guided smartphone app is used by the user to acquire the information, that is later processed on a server to obtain the 3D model. The smartphone app is designed to guide users with no knowledge of photogrammetry, computer vision or 3D modelling. The processing is fully automatic offline. The photogrammetric tool is also non-invasive, reacting well with quick and sudden infant's movements. Therefore, it does not require sedation. This paper tackles the accuracy and repeatability analysis tested both for a single user (intrauser) and multiple non-expert user (interuser) on 3D printed head models. The results allow us to confirm an accuracy below 1.5 mm, which makes the system suitable for clinical practice by medical staff. The basic automatically-derived anthropometric linear magnitudes are also tested obtaining a mean variability of 0.6 +/- 0.6 mm for the longitudinal and transversal distances and 1.4 +/- 1.3 mm for the maximum perimeter. es_ES
dc.description.sponsorship This project is funded by Instituto de Salud Carlos III and European Regional Development Fund (FEDER), project number PI18/00881, and by Generalitat Valenciana, grant number ACIF/2017/056. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation GENERALITAT VALENCIANA/ACIF/2017/056 es_ES
dc.relation INSTITUTO DE SALUD CARLOS III/PI18/00881 es_ES
dc.relation.ispartof ISPRS Journal of Photogrammetry and Remote Sensing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject 3D modelling es_ES
dc.subject Medicine es_ES
dc.subject Plagiocephaly es_ES
dc.subject Smartphone es_ES
dc.subject Photogrammetry es_ES
dc.subject.classification INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA es_ES
dc.title Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.isprsjprs.2020.06.013 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria es_ES
dc.description.bibliographicCitation Barbero-García, I.; Lerma, JL.; Mora Navarro, JG. (2020). Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis. ISPRS Journal of Photogrammetry and Remote Sensing. 166:268-277. https://doi.org/10.1016/j.isprsjprs.2020.06.013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.isprsjprs.2020.06.013 es_ES
dc.description.upvformatpinicio 268 es_ES
dc.description.upvformatpfin 277 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 166 es_ES
dc.relation.pasarela S\414416 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder INSTITUTO DE SALUD CARLOS III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Aldridge, K., Boyadjiev, S. A., Capone, G. T., DeLeon, V. B., & Richtsmeier, J. T. (2005). Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. American Journal of Medical Genetics Part A, 138A(3), 247-253. doi:10.1002/ajmg.a.30959 es_ES
dc.description.references Argenta, L. (2004). Clinical Classification of Positional Plagiocephaly. Journal of Craniofacial Surgery, 15(3), 368-372. doi:10.1097/00001665-200405000-00004 es_ES
dc.description.references Ballardini, E., Sisti, M., Basaglia, N., Benedetto, M., Baldan, A., Borgna-Pignatti, C., & Garani, G. (2018). Prevalence and characteristics of positional plagiocephaly in healthy full-term infants at 8–12 weeks of life. European Journal of Pediatrics, 177(10), 1547-1554. doi:10.1007/s00431-018-3212-0 es_ES
dc.description.references Barbero-García, I., Cabrelles, M., Lerma, J. L., & Marqués-Mateu, Á. (2018). Smartphone-based close-range photogrammetric assessment of spherical objects. The Photogrammetric Record, 33(162), 283-299. doi:10.1111/phor.12243 es_ES
dc.description.references Barbero-García, I., Lerma, J. L., Marqués-Mateu, Á., & Miranda, P. (2017). Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants. World Neurosurgery, 102, 545-554. doi:10.1016/j.wneu.2017.03.015 es_ES
dc.description.references Barbero-García, I., Lerma, J. L., Miranda, P., & Marqués-Mateu, Á. (2019). Smartphone-based photogrammetric 3D modelling assessment by comparison with radiological medical imaging for cranial deformation analysis. Measurement, 131, 372-379. doi:10.1016/j.measurement.2018.08.059 es_ES
dc.description.references Bay, H., Ess, A., Tuytelaars, T., Gool, L. Van, 2007. Speeded-Up Robust Features (SURF). https://doi.org/10.1016/j.cviu.2007.09.014. es_ES
dc.description.references Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4), 349-359. doi:10.1109/2945.817351 es_ES
dc.description.references Besl, P.J., McKay, N.D., 1992. Method for registation of 3-D shapes. In: Schenker, P.S. (Ed.), Sensor Fusion IV: Control Paradigms and Data Structures. SPIE, pp. 586–606. https://doi.org/10.1117/12.57955. es_ES
dc.description.references Camison, L., Bykowski, M., Lee, W. W., Carlson, J. C., Roosenboom, J., Goldstein, J. A., … Weinberg, S. M. (2018). Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. International Journal of Oral and Maxillofacial Surgery, 47(3), 403-410. doi:10.1016/j.ijom.2017.08.008 es_ES
dc.description.references Caple, J. M., Stephan, C. N., Gregory, L. S., & MacGregor, D. M. (2015). Effect of Head Position on Facial Soft Tissue Depth Measurements Obtained Using Computed Tomography. Journal of Forensic Sciences, 61(1), 147-152. doi:10.1111/1556-4029.12896 es_ES
dc.description.references Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool. In: Scarano, V., Chiara, R. De, Erra, U. (Eds.), Eurographics Italian Chapter Conference. The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136. es_ES
dc.description.references Collett, B. R., Wallace, E. R., Kartin, D., Cunningham, M. L., & Speltz, M. L. (2019). Cognitive Outcomes and Positional Plagiocephaly. Pediatrics, 143(2), e20182373. doi:10.1542/peds.2018-2373 es_ES
dc.description.references De Jong, G., Tolhuisen, M., Meulstee, J., van der Heijden, F., van Lindert, E., Borstlap, W., … Delye, H. (2017). Radiation-free 3D head shape and volume evaluation after endoscopically assisted strip craniectomy followed by helmet therapy for trigonocephaly. Journal of Cranio-Maxillofacial Surgery, 45(5), 661-671. doi:10.1016/j.jcms.2017.02.007 es_ES
dc.description.references De Jong, G. A., Maal, T. J. J., & Delye, H. (2015). The computed cranial focal point. Journal of Cranio-Maxillofacial Surgery, 43(9), 1737-1742. doi:10.1016/j.jcms.2015.08.023 es_ES
dc.description.references Dörhage, K. W. W., Wiltfang, J., von Grabe, V., Sonntag, A., Becker, S. T., & Beck-Broichsitter, B. E. (2018). Effect of head orthoses on skull deformities in positional plagiocephaly: Evaluation of a 3-dimensional approach. Journal of Cranio-Maxillofacial Surgery, 46(6), 953-957. doi:10.1016/j.jcms.2018.03.013 es_ES
dc.description.references Farkas, L.G., 1994. Anthropometry of the Head and Face. Raven Pr. es_ES
dc.description.references Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023 es_ES
dc.description.references Goebbels, S., Pohle-Fröhlich, R., Pricken, P., 2019. Iterative closest point algorithm for accurate registration of coarsely registered point clouds with CityGML models. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. pp. 201–208. https://doi.org/10.5194/isprs-annals-IV-2-W5-201-2019. es_ES
dc.description.references Grazioso, S., Selvaggio, M., Caporaso, T., & Di Gironimo, G. (2019). A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses. JPO Journal of Prosthetics and Orthotics, 31(2), 133-139. doi:10.1097/jpo.0000000000000244 es_ES
dc.description.references Heymsfield, S.B., Bourgeois, B., Ng, B.K., Sommer, M.J., Li, X., Shepherd, J.A., 2018. Digital anthropometry: A critical review. In: European Journal of Clinical Nutrition. Nature Publishing Group, pp. 680–687. https://doi.org/10.1038/s41430-018-0145-7. es_ES
dc.description.references Hsu, C.-K., Hallac, R. R., Denadai, R., Wang, S.-W., Kane, A. A., Lo, L.-J., & Chou, P.-Y. (2019). Quantifying normal head form and craniofacial asymmetry of elementary school students in Taiwan. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(12), 2033-2040. doi:10.1016/j.bjps.2019.09.005 es_ES
dc.description.references Jodeh, D. S., Curtis, H., Cray, J. J., Ford, J., Decker, S., & Rottgers, S. A. (2018). Anthropometric Evaluation of Periorbital Region and Facial Projection Using Three-Dimensional Photogrammetry. Journal of Craniofacial Surgery, 29(8), 2017-2020. doi:10.1097/scs.0000000000004761 es_ES
dc.description.references Khormi, Y., Chiu, M., Goodluck Tyndall, R., Mortenson, P., Smith, D., & Steinbok, P. (2019). Safety and efficacy of independent allied healthcare professionals in the assessment and management of plagiocephaly patients. Child’s Nervous System, 36(2), 373-377. doi:10.1007/s00381-019-04400-z es_ES
dc.description.references Kournoutas, I., Vigo, V., Chae, R., Wang, M., Gurrola, J., Abla, A. A., … Rubio, R. R. (2019). Acquisition of Volumetric Models of Skull Base Anatomy Using Endoscopic Endonasal Approaches: 3D Scanning of Deep Corridors Via Photogrammetry. World Neurosurgery, 129, 372-377. doi:10.1016/j.wneu.2019.05.251 es_ES
dc.description.references Lopes Alho, E.J., Rondinoni, C., Furokawa, F.O., Monaco, B.A., 2019. Computer-assisted craniometric evaluation for diagnosis and follow-up of craniofacial asymmetries: SymMetric v. 1.0. Child’s Nerv. Syst. 1–7. https://doi.org/10.1007/s00381-019-04451-2. es_ES
dc.description.references Lowe, D.G., 1999. Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99. IEEE Computer Society, Washington, DC, USA, p. 1150. es_ES
dc.description.references Lübbers, H.-T., Medinger, L., Kruse, A., Grätz, K. W., & Matthews, F. (2010). Precision and Accuracy of the 3dMD Photogrammetric System in Craniomaxillofacial Application. Journal of Craniofacial Surgery, 21(3), 763-767. doi:10.1097/scs.0b013e3181d841f7 es_ES
dc.description.references Martiniuk, A. L. C., Vujovich-Dunn, C., Park, M., Yu, W., & Lucas, B. R. (2017). Plagiocephaly and Developmental Delay: A Systematic Review. Journal of Developmental & Behavioral Pediatrics, 38(1), 67-78. doi:10.1097/dbp.0000000000000376 es_ES
dc.description.references Meulstee, J. W., Verhamme, L. M., Borstlap, W. A., Van der Heijden, F., De Jong, G. A., Xi, T., … Maal, T. J. J. (2017). A new method for three-dimensional evaluation of the cranial shape and the automatic identification of craniosynostosis using 3D stereophotogrammetry. International Journal of Oral and Maxillofacial Surgery, 46(7), 819-826. doi:10.1016/j.ijom.2017.03.017 es_ES
dc.description.references Mitchell, H. ., & Newton, I. (2002). Medical photogrammetric measurement: overview and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 286-294. doi:10.1016/s0924-2716(02)00065-5 es_ES
dc.description.references Mortenson, P. A., & Steinbok, P. (2006). Quantifying Positional Plagiocephaly. Journal of Craniofacial Surgery, 17(3), 413-419. doi:10.1097/00001665-200605000-00005 es_ES
dc.description.references Munn, L., & Stephan, C. N. (2018). Changes in face topography from supine-to-upright position—And soft tissue correction values for craniofacial identification. Forensic Science International, 289, 40-50. doi:10.1016/j.forsciint.2018.05.016 es_ES
dc.description.references Muñoz-Salinas, R., Marín-Jimenez, M. J., Yeguas-Bolivar, E., & Medina-Carnicer, R. (2018). Mapping and localization from planar markers. Pattern Recognition, 73, 158-171. doi:10.1016/j.patcog.2017.08.010 es_ES
dc.description.references Nahles, S., Klein, M., Yacoub, A., & Neyer, J. (2018). Evaluation of positional plagiocephaly: Conventional anthropometric measurement versus laser scanning method. Journal of Cranio-Maxillofacial Surgery, 46(1), 11-21. doi:10.1016/j.jcms.2017.10.010 es_ES
dc.description.references Nocerino, E., Poiesi, F., Locher, A., Tefera, Y.T., Remondino, F., Chippendale, P., Van Gool, L., 2017. 3D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-based Server. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W8, 187–194. https://doi.org/10.5194/isprs-archives-XLII-2-W8-187-2017. es_ES
dc.description.references Patias, P. (2002). Medical imaging challenges photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 295-310. doi:10.1016/s0924-2716(02)00066-7 es_ES
dc.description.references Pierrot Deseilligny, M., & Clery, I. (2012). APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 269-276. doi:10.5194/isprsarchives-xxxviii-5-w16-269-2011 es_ES
dc.description.references Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004 es_ES
dc.description.references Siegenthaler, M. H. (2015). Methods to Diagnose, Classify, and Monitor Infantile Deformational Plagiocephaly and Brachycephaly: A Narrative Review. Journal of Chiropractic Medicine, 14(3), 191-204. doi:10.1016/j.jcm.2015.05.003 es_ES
dc.description.references Sirazitdinova, E., Deserno, T.M., 2017. System Design for 3D Wound Imaging Using Low-Cost Mobile Devices. In: Cook, T.S., Zhang, J. (Eds.), Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications. International Society for Optics and Photonics. https://doi.org/10.3233/978-1-61499-830-3-1237. es_ES
dc.description.references Urbanová, P., Hejna, P., & Jurda, M. (2015). Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Science International, 250, 77-86. doi:10.1016/j.forsciint.2015.03.005 es_ES
dc.description.references Ursitti, F., Fadda, T., Papetti, L., Pagnoni, M., Nicita, F., Iannetti, G., & Spalice, A. (2011). Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatrica, 100(9), 1185-1194. doi:10.1111/j.1651-2227.2011.02299.x es_ES
dc.description.references Wang, C., Zhang, Y., & Zhou, X. (2018). Robust Image Watermarking Algorithm Based on ASIFT against Geometric Attacks. Applied Sciences, 8(3), 410. doi:10.3390/app8030410 es_ES
dc.description.references Wilbrand, J.-F., Wilbrand, M., Pons-Kuehnemann, J., Blecher, J.-C., Christophis, P., Howaldt, H.-P., & Schaaf, H. (2011). Value and reliability of anthropometric measurements of cranial deformity in early childhood. Journal of Cranio-Maxillofacial Surgery, 39(1), 24-29. doi:10.1016/j.jcms.2010.03.010 es_ES
dc.description.references Wong, J. Y., Oh, A. K., Ohta, E., Hunt, A. T., Rogers, G. F., Mulliken, J. B., & Deutsch, C. K. (2008). Validity and Reliability of Craniofacial Anthropometric Measurement of 3D Digital Photogrammetric Images. The Cleft Palate-Craniofacial Journal, 45(3), 232-239. doi:10.1597/06-175 es_ES


This item appears in the following Collection(s)

Show simple item record