Mostrar el registro sencillo del ítem
dc.contributor.author | Barbero-García, Inés![]() |
es_ES |
dc.contributor.author | Lerma, José Luis![]() |
es_ES |
dc.contributor.author | Mora Navarro, Joaquin Gaspar![]() |
es_ES |
dc.date.accessioned | 2021-07-21T03:31:30Z | |
dc.date.available | 2021-07-21T03:31:30Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.issn | 0924-2716 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169646 | |
dc.description.abstract | [EN] Image-based and range-based solutions can be used for the acquisition of valuable data in medicine. However, most of these methods are not valid for non-static patients. Cranial deformation is a problem with high prevalence among infants and image-based solutions can be used to assess the degree of deformation and monitor the evolution of patients. However, it is required to deal with infants normal movement during the assessment in order to avoid sedation. Some high-end multiple-sensor image-based solutions allow the achievement of accurate 3D data for medical applications under unpredicted dynamic conditions in consultation. In this paper, a novel, single photogrammetric smartphone-based solution for cranial deformation assessment is presented. A coded cap is placed on the infant's head and a guided smartphone app is used by the user to acquire the information, that is later processed on a server to obtain the 3D model. The smartphone app is designed to guide users with no knowledge of photogrammetry, computer vision or 3D modelling. The processing is fully automatic offline. The photogrammetric tool is also non-invasive, reacting well with quick and sudden infant's movements. Therefore, it does not require sedation. This paper tackles the accuracy and repeatability analysis tested both for a single user (intrauser) and multiple non-expert user (interuser) on 3D printed head models. The results allow us to confirm an accuracy below 1.5 mm, which makes the system suitable for clinical practice by medical staff. The basic automatically-derived anthropometric linear magnitudes are also tested obtaining a mean variability of 0.6 +/- 0.6 mm for the longitudinal and transversal distances and 1.4 +/- 1.3 mm for the maximum perimeter. | es_ES |
dc.description.sponsorship | This project is funded by Instituto de Salud Carlos III and European Regional Development Fund (FEDER), project number PI18/00881, and by Generalitat Valenciana, grant number ACIF/2017/056. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | ISPRS Journal of Photogrammetry and Remote Sensing | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | 3D modelling | es_ES |
dc.subject | Medicine | es_ES |
dc.subject | Plagiocephaly | es_ES |
dc.subject | Smartphone | es_ES |
dc.subject | Photogrammetry | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.isprsjprs.2020.06.013 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F056/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII//PI18%2F00881/ES/Análisis y monitorización no invasiva y de bajo coste de la deformación craneal en lactantes mediante fotogrametría 3D y teléfonos inteligentes/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Barbero-García, I.; Lerma, JL.; Mora Navarro, JG. (2020). Fully automatic smartphone-based photogrammetric 3D modelling of infant¿s heads for cranial deformation analysis. ISPRS Journal of Photogrammetry and Remote Sensing. 166:268-277. https://doi.org/10.1016/j.isprsjprs.2020.06.013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.isprsjprs.2020.06.013 | es_ES |
dc.description.upvformatpinicio | 268 | es_ES |
dc.description.upvformatpfin | 277 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 166 | es_ES |
dc.relation.pasarela | S\414416 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | INSTITUTO DE SALUD CARLOS III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Aldridge, K., Boyadjiev, S. A., Capone, G. T., DeLeon, V. B., & Richtsmeier, J. T. (2005). Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images. American Journal of Medical Genetics Part A, 138A(3), 247-253. doi:10.1002/ajmg.a.30959 | es_ES |
dc.description.references | Argenta, L. (2004). Clinical Classification of Positional Plagiocephaly. Journal of Craniofacial Surgery, 15(3), 368-372. doi:10.1097/00001665-200405000-00004 | es_ES |
dc.description.references | Ballardini, E., Sisti, M., Basaglia, N., Benedetto, M., Baldan, A., Borgna-Pignatti, C., & Garani, G. (2018). Prevalence and characteristics of positional plagiocephaly in healthy full-term infants at 8–12 weeks of life. European Journal of Pediatrics, 177(10), 1547-1554. doi:10.1007/s00431-018-3212-0 | es_ES |
dc.description.references | Barbero-García, I., Cabrelles, M., Lerma, J. L., & Marqués-Mateu, Á. (2018). Smartphone-based close-range photogrammetric assessment of spherical objects. The Photogrammetric Record, 33(162), 283-299. doi:10.1111/phor.12243 | es_ES |
dc.description.references | Barbero-García, I., Lerma, J. L., Marqués-Mateu, Á., & Miranda, P. (2017). Low-Cost Smartphone-Based Photogrammetry for the Analysis of Cranial Deformation in Infants. World Neurosurgery, 102, 545-554. doi:10.1016/j.wneu.2017.03.015 | es_ES |
dc.description.references | Barbero-García, I., Lerma, J. L., Miranda, P., & Marqués-Mateu, Á. (2019). Smartphone-based photogrammetric 3D modelling assessment by comparison with radiological medical imaging for cranial deformation analysis. Measurement, 131, 372-379. doi:10.1016/j.measurement.2018.08.059 | es_ES |
dc.description.references | Bay, H., Ess, A., Tuytelaars, T., Gool, L. Van, 2007. Speeded-Up Robust Features (SURF). https://doi.org/10.1016/j.cviu.2007.09.014. | es_ES |
dc.description.references | Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4), 349-359. doi:10.1109/2945.817351 | es_ES |
dc.description.references | Besl, P.J., McKay, N.D., 1992. Method for registation of 3-D shapes. In: Schenker, P.S. (Ed.), Sensor Fusion IV: Control Paradigms and Data Structures. SPIE, pp. 586–606. https://doi.org/10.1117/12.57955. | es_ES |
dc.description.references | Camison, L., Bykowski, M., Lee, W. W., Carlson, J. C., Roosenboom, J., Goldstein, J. A., … Weinberg, S. M. (2018). Validation of the Vectra H1 portable three-dimensional photogrammetry system for facial imaging. International Journal of Oral and Maxillofacial Surgery, 47(3), 403-410. doi:10.1016/j.ijom.2017.08.008 | es_ES |
dc.description.references | Caple, J. M., Stephan, C. N., Gregory, L. S., & MacGregor, D. M. (2015). Effect of Head Position on Facial Soft Tissue Depth Measurements Obtained Using Computed Tomography. Journal of Forensic Sciences, 61(1), 147-152. doi:10.1111/1556-4029.12896 | es_ES |
dc.description.references | Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool. In: Scarano, V., Chiara, R. De, Erra, U. (Eds.), Eurographics Italian Chapter Conference. The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136. | es_ES |
dc.description.references | Collett, B. R., Wallace, E. R., Kartin, D., Cunningham, M. L., & Speltz, M. L. (2019). Cognitive Outcomes and Positional Plagiocephaly. Pediatrics, 143(2), e20182373. doi:10.1542/peds.2018-2373 | es_ES |
dc.description.references | De Jong, G., Tolhuisen, M., Meulstee, J., van der Heijden, F., van Lindert, E., Borstlap, W., … Delye, H. (2017). Radiation-free 3D head shape and volume evaluation after endoscopically assisted strip craniectomy followed by helmet therapy for trigonocephaly. Journal of Cranio-Maxillofacial Surgery, 45(5), 661-671. doi:10.1016/j.jcms.2017.02.007 | es_ES |
dc.description.references | De Jong, G. A., Maal, T. J. J., & Delye, H. (2015). The computed cranial focal point. Journal of Cranio-Maxillofacial Surgery, 43(9), 1737-1742. doi:10.1016/j.jcms.2015.08.023 | es_ES |
dc.description.references | Dörhage, K. W. W., Wiltfang, J., von Grabe, V., Sonntag, A., Becker, S. T., & Beck-Broichsitter, B. E. (2018). Effect of head orthoses on skull deformities in positional plagiocephaly: Evaluation of a 3-dimensional approach. Journal of Cranio-Maxillofacial Surgery, 46(6), 953-957. doi:10.1016/j.jcms.2018.03.013 | es_ES |
dc.description.references | Farkas, L.G., 1994. Anthropometry of the Head and Face. Raven Pr. | es_ES |
dc.description.references | Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023 | es_ES |
dc.description.references | Goebbels, S., Pohle-Fröhlich, R., Pricken, P., 2019. Iterative closest point algorithm for accurate registration of coarsely registered point clouds with CityGML models. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. pp. 201–208. https://doi.org/10.5194/isprs-annals-IV-2-W5-201-2019. | es_ES |
dc.description.references | Grazioso, S., Selvaggio, M., Caporaso, T., & Di Gironimo, G. (2019). A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses. JPO Journal of Prosthetics and Orthotics, 31(2), 133-139. doi:10.1097/jpo.0000000000000244 | es_ES |
dc.description.references | Heymsfield, S.B., Bourgeois, B., Ng, B.K., Sommer, M.J., Li, X., Shepherd, J.A., 2018. Digital anthropometry: A critical review. In: European Journal of Clinical Nutrition. Nature Publishing Group, pp. 680–687. https://doi.org/10.1038/s41430-018-0145-7. | es_ES |
dc.description.references | Hsu, C.-K., Hallac, R. R., Denadai, R., Wang, S.-W., Kane, A. A., Lo, L.-J., & Chou, P.-Y. (2019). Quantifying normal head form and craniofacial asymmetry of elementary school students in Taiwan. Journal of Plastic, Reconstructive & Aesthetic Surgery, 72(12), 2033-2040. doi:10.1016/j.bjps.2019.09.005 | es_ES |
dc.description.references | Jodeh, D. S., Curtis, H., Cray, J. J., Ford, J., Decker, S., & Rottgers, S. A. (2018). Anthropometric Evaluation of Periorbital Region and Facial Projection Using Three-Dimensional Photogrammetry. Journal of Craniofacial Surgery, 29(8), 2017-2020. doi:10.1097/scs.0000000000004761 | es_ES |
dc.description.references | Khormi, Y., Chiu, M., Goodluck Tyndall, R., Mortenson, P., Smith, D., & Steinbok, P. (2019). Safety and efficacy of independent allied healthcare professionals in the assessment and management of plagiocephaly patients. Child’s Nervous System, 36(2), 373-377. doi:10.1007/s00381-019-04400-z | es_ES |
dc.description.references | Kournoutas, I., Vigo, V., Chae, R., Wang, M., Gurrola, J., Abla, A. A., … Rubio, R. R. (2019). Acquisition of Volumetric Models of Skull Base Anatomy Using Endoscopic Endonasal Approaches: 3D Scanning of Deep Corridors Via Photogrammetry. World Neurosurgery, 129, 372-377. doi:10.1016/j.wneu.2019.05.251 | es_ES |
dc.description.references | Lopes Alho, E.J., Rondinoni, C., Furokawa, F.O., Monaco, B.A., 2019. Computer-assisted craniometric evaluation for diagnosis and follow-up of craniofacial asymmetries: SymMetric v. 1.0. Child’s Nerv. Syst. 1–7. https://doi.org/10.1007/s00381-019-04451-2. | es_ES |
dc.description.references | Lowe, D.G., 1999. Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99. IEEE Computer Society, Washington, DC, USA, p. 1150. | es_ES |
dc.description.references | Lübbers, H.-T., Medinger, L., Kruse, A., Grätz, K. W., & Matthews, F. (2010). Precision and Accuracy of the 3dMD Photogrammetric System in Craniomaxillofacial Application. Journal of Craniofacial Surgery, 21(3), 763-767. doi:10.1097/scs.0b013e3181d841f7 | es_ES |
dc.description.references | Martiniuk, A. L. C., Vujovich-Dunn, C., Park, M., Yu, W., & Lucas, B. R. (2017). Plagiocephaly and Developmental Delay: A Systematic Review. Journal of Developmental & Behavioral Pediatrics, 38(1), 67-78. doi:10.1097/dbp.0000000000000376 | es_ES |
dc.description.references | Meulstee, J. W., Verhamme, L. M., Borstlap, W. A., Van der Heijden, F., De Jong, G. A., Xi, T., … Maal, T. J. J. (2017). A new method for three-dimensional evaluation of the cranial shape and the automatic identification of craniosynostosis using 3D stereophotogrammetry. International Journal of Oral and Maxillofacial Surgery, 46(7), 819-826. doi:10.1016/j.ijom.2017.03.017 | es_ES |
dc.description.references | Mitchell, H. ., & Newton, I. (2002). Medical photogrammetric measurement: overview and prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 286-294. doi:10.1016/s0924-2716(02)00065-5 | es_ES |
dc.description.references | Mortenson, P. A., & Steinbok, P. (2006). Quantifying Positional Plagiocephaly. Journal of Craniofacial Surgery, 17(3), 413-419. doi:10.1097/00001665-200605000-00005 | es_ES |
dc.description.references | Munn, L., & Stephan, C. N. (2018). Changes in face topography from supine-to-upright position—And soft tissue correction values for craniofacial identification. Forensic Science International, 289, 40-50. doi:10.1016/j.forsciint.2018.05.016 | es_ES |
dc.description.references | Muñoz-Salinas, R., Marín-Jimenez, M. J., Yeguas-Bolivar, E., & Medina-Carnicer, R. (2018). Mapping and localization from planar markers. Pattern Recognition, 73, 158-171. doi:10.1016/j.patcog.2017.08.010 | es_ES |
dc.description.references | Nahles, S., Klein, M., Yacoub, A., & Neyer, J. (2018). Evaluation of positional plagiocephaly: Conventional anthropometric measurement versus laser scanning method. Journal of Cranio-Maxillofacial Surgery, 46(1), 11-21. doi:10.1016/j.jcms.2017.10.010 | es_ES |
dc.description.references | Nocerino, E., Poiesi, F., Locher, A., Tefera, Y.T., Remondino, F., Chippendale, P., Van Gool, L., 2017. 3D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-based Server. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLII-2/W8, 187–194. https://doi.org/10.5194/isprs-archives-XLII-2-W8-187-2017. | es_ES |
dc.description.references | Patias, P. (2002). Medical imaging challenges photogrammetry. ISPRS Journal of Photogrammetry and Remote Sensing, 56(5-6), 295-310. doi:10.1016/s0924-2716(02)00066-7 | es_ES |
dc.description.references | Pierrot Deseilligny, M., & Clery, I. (2012). APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W16, 269-276. doi:10.5194/isprsarchives-xxxviii-5-w16-269-2011 | es_ES |
dc.description.references | Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004 | es_ES |
dc.description.references | Siegenthaler, M. H. (2015). Methods to Diagnose, Classify, and Monitor Infantile Deformational Plagiocephaly and Brachycephaly: A Narrative Review. Journal of Chiropractic Medicine, 14(3), 191-204. doi:10.1016/j.jcm.2015.05.003 | es_ES |
dc.description.references | Sirazitdinova, E., Deserno, T.M., 2017. System Design for 3D Wound Imaging Using Low-Cost Mobile Devices. In: Cook, T.S., Zhang, J. (Eds.), Proc. SPIE 10138, Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications. International Society for Optics and Photonics. https://doi.org/10.3233/978-1-61499-830-3-1237. | es_ES |
dc.description.references | Urbanová, P., Hejna, P., & Jurda, M. (2015). Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Forensic Science International, 250, 77-86. doi:10.1016/j.forsciint.2015.03.005 | es_ES |
dc.description.references | Ursitti, F., Fadda, T., Papetti, L., Pagnoni, M., Nicita, F., Iannetti, G., & Spalice, A. (2011). Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatrica, 100(9), 1185-1194. doi:10.1111/j.1651-2227.2011.02299.x | es_ES |
dc.description.references | Wang, C., Zhang, Y., & Zhou, X. (2018). Robust Image Watermarking Algorithm Based on ASIFT against Geometric Attacks. Applied Sciences, 8(3), 410. doi:10.3390/app8030410 | es_ES |
dc.description.references | Wilbrand, J.-F., Wilbrand, M., Pons-Kuehnemann, J., Blecher, J.-C., Christophis, P., Howaldt, H.-P., & Schaaf, H. (2011). Value and reliability of anthropometric measurements of cranial deformity in early childhood. Journal of Cranio-Maxillofacial Surgery, 39(1), 24-29. doi:10.1016/j.jcms.2010.03.010 | es_ES |
dc.description.references | Wong, J. Y., Oh, A. K., Ohta, E., Hunt, A. T., Rogers, G. F., Mulliken, J. B., & Deutsch, C. K. (2008). Validity and Reliability of Craniofacial Anthropometric Measurement of 3D Digital Photogrammetric Images. The Cleft Palate-Craniofacial Journal, 45(3), 232-239. doi:10.1597/06-175 | es_ES |