FDA.Pharmaceutical CGMPs for the 21s Century—A Risk‐Based Approach; 2004.
Liu, J. J., & MacGregor, J. F. (2005). Modeling and Optimization of Product Appearance: Application to Injection-Molded Plastic Panels. Industrial & Engineering Chemistry Research, 44(13), 4687-4696. doi:10.1021/ie0492101
Bonvin, D., Georgakis, C., Pantelides, C. C., Barolo, M., Grover, M. A., Rodrigues, D., … Dochain, D. (2016). Linking Models and Experiments. Industrial & Engineering Chemistry Research, 55(25), 6891-6903. doi:10.1021/acs.iecr.5b04801
[+]
FDA.Pharmaceutical CGMPs for the 21s Century—A Risk‐Based Approach; 2004.
Liu, J. J., & MacGregor, J. F. (2005). Modeling and Optimization of Product Appearance: Application to Injection-Molded Plastic Panels. Industrial & Engineering Chemistry Research, 44(13), 4687-4696. doi:10.1021/ie0492101
Bonvin, D., Georgakis, C., Pantelides, C. C., Barolo, M., Grover, M. A., Rodrigues, D., … Dochain, D. (2016). Linking Models and Experiments. Industrial & Engineering Chemistry Research, 55(25), 6891-6903. doi:10.1021/acs.iecr.5b04801
MontgomeryDC.Applied Statistics and Probability for Engineers Third Edition; 2003; Vol. 37.
MacGregorJF.Empirical Models for Analyzing “Big” Data‐What´s the Difference. InSpring AIChE Conference; Orlando Florida USA 2018.
Liu, Z., Bruwer, M.-J., MacGregor, J. F., Rathore, S. S. S., Reed, D. E., & Champagne, M. J. (2011). Modeling and Optimization of a Tablet Manufacturing Line. Journal of Pharmaceutical Innovation, 6(3), 170-180. doi:10.1007/s12247-011-9112-8
MacGregor, J. F., Bruwer, M. J., Miletic, I., Cardin, M., & Liu, Z. (2015). Latent Variable Models and Big Data in the Process Industries. IFAC-PapersOnLine, 48(8), 520-524. doi:10.1016/j.ifacol.2015.09.020
Jaeckle, C. M., & MacGregor, J. F. (2000). Industrial applications of product design through the inversion of latent variable models. Chemometrics and Intelligent Laboratory Systems, 50(2), 199-210. doi:10.1016/s0169-7439(99)00058-1
García-Muñoz, S., Kourti, T., MacGregor, J. F., Apruzzese, F., & Champagne, M. (2006). Optimization of Batch Operating Policies. Part I. Handling Multiple Solutions#. Industrial & Engineering Chemistry Research, 45(23), 7856-7866. doi:10.1021/ie060314g
Tomba, E., Barolo, M., & García-Muñoz, S. (2012). General Framework for Latent Variable Model Inversion for the Design and Manufacturing of New Products. Industrial & Engineering Chemistry Research, 51(39), 12886-12900. doi:10.1021/ie301214c
Facco, P., Dal Pastro, F., Meneghetti, N., Bezzo, F., & Barolo, M. (2015). Bracketing the Design Space within the Knowledge Space in Pharmaceutical Product Development. Industrial & Engineering Chemistry Research, 54(18), 5128-5138. doi:10.1021/acs.iecr.5b00863
Bano, G., Facco, P., Bezzo, F., & Barolo, M. (2018). Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach. AIChE Journal, 64(7), 2438-2449. doi:10.1002/aic.16133
Palací-López, D., Facco, P., Barolo, M., & Ferrer, A. (2019). New tools for the design and manufacturing of new products based on Latent Variable Model Inversion. Chemometrics and Intelligent Laboratory Systems, 194, 103848. doi:10.1016/j.chemolab.2019.103848
MacGregor, J. F., & Bruwer, M.-J. (2008). A Framework for the Development of Design and Control Spaces. Journal of Pharmaceutical Innovation, 3(1), 15-22. doi:10.1007/s12247-008-9023-5
Jaeckle, C., & Macgregor, J. (1996). Product design through multivariate statistical analysis of process data. Computers & Chemical Engineering, 20, S1047-S1052. doi:10.1016/0098-1354(96)00182-2
Lakshminarayanan, S., Fujii, H., Grosman, B., Dassau, E., & Lewin, D. R. (2000). New product design via analysis of historical databases. Computers & Chemical Engineering, 24(2-7), 671-676. doi:10.1016/s0098-1354(00)00406-3
García-Muñoz, S., MacGregor, J. F., Neogi, D., Latshaw, B. E., & Mehta, S. (2008). Optimization of Batch Operating Policies. Part II. Incorporating Process Constraints and Industrial Applications. Industrial & Engineering Chemistry Research, 47(12), 4202-4208. doi:10.1021/ie071437j
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1
Ferrer, A. (2007). Multivariate Statistical Process Control Based on Principal Component Analysis (MSPC-PCA): Some Reflections and a Case Study in an Autobody Assembly Process. Quality Engineering, 19(4), 311-325. doi:10.1080/08982110701621304
Feltens, J. (2008). Vector method to compute the Cartesian (X, Y, Z) to geodetic ( $${\phi}$$ , λ, h) transformation on a triaxial ellipsoid. Journal of Geodesy, 83(2), 129-137. doi:10.1007/s00190-008-0246-5
Arteaga, F., & Ferrer, A. (2013). Building covariance matrices with the desired structure. Chemometrics and Intelligent Laboratory Systems, 127, 80-88. doi:10.1016/j.chemolab.2013.06.003
Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003
[-]