- -

Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguilar, Ignacio es_ES
dc.contributor.author Fernandez, Eduardo N. es_ES
dc.contributor.author Blasco Mateu, Agustín es_ES
dc.contributor.author Ravagnolo, Olga es_ES
dc.contributor.author Legarra, Andres es_ES
dc.date.accessioned 2021-07-21T03:31:43Z
dc.date.available 2021-07-21T03:31:43Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0931-2668 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169651
dc.description.abstract [EN] Model-based accuracy, defined as the theoretical correlation between true and estimated breeding value, can be obtained for each individual as a function of its prediction error variance (PEV) and inbreeding coefficient F, in BLUP, GBLUP and SSGBLUP genetic evaluations. However, for computational convenience, inbreeding is often ignored in two places. First, in the computation of reliability = 1-PEV/(1 + F). Second, in the set-up, using Henderson's rules, of the inverse of the pedigree-based relationship matrix A. Both approximations have an effect in the computation of model-based accuracy and result in wrong values. In this work, first we present a reminder of the theory and extend it to SSGBLUP. Second, we quantify the error of ignoring inbreeding with real data in three scenarios: BLUP evaluation and SSGBLUP in Uruguayan dairy cattle, and BLUP evaluations in a line of rabbit closed for >40 generations with steady increase of inbreeding up to an average of 0.30. We show that ignoring inbreeding in the set-up of the A-inverse is equivalent to assume that non-inbred animals are actually inbred. This results in an increase of apparent PEV that is negligible for dairy cattle but considerable for rabbit. Ignoring inbreeding in reliability = 1-PEV/(1 + F) leads to underestimation of reliability for BLUP evaluations, and this underestimation is very large for rabbit. For SSGBLUP in dairy cattle, it leads to both underestimation and overestimation of reliability, both for genotyped and non-genotyped animals. We strongly recommend to include inbreeding both in the set-up of A-inverse and in the computation of reliability from PEVs. es_ES
dc.description.sponsorship FEDER; INRA; Universidad Nacional de Lomas de Zamora; European Unions' Horizon 2020 Research & Innovation Programme, Grant/Award Number: No772787 es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of Animal Breeding and Genetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jbg.12470 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/772787/EU/SMAll RuminanTs breeding for Efficiency and Resilience/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Aguilar, I.; Fernandez, EN.; Blasco Mateu, A.; Ravagnolo, O.; Legarra, A. (2020). Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP. Journal of Animal Breeding and Genetics. 137(4):356-364. https://doi.org/10.1111/jbg.12470 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/jbg.12470 es_ES
dc.description.upvformatpinicio 356 es_ES
dc.description.upvformatpfin 364 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 137 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 32080913 es_ES
dc.relation.pasarela S\433527 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universidad Nacional de Lomas de Zamora es_ES
dc.contributor.funder Institut National de la Recherche Agronomique, Francia es_ES
dc.description.references Bijma, P. (2012). Accuracies of estimated breeding values from ordinary genetic evaluations do not reflect the correlation between true and estimated breeding values in selected populations. Journal of Animal Breeding and Genetics, 129(5), 345-358. doi:10.1111/j.1439-0388.2012.00991.x es_ES
dc.description.references Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T., & Su, G. (2012). Single-step methods for genomic evaluation in pigs. Animal, 6(10), 1565-1571. doi:10.1017/s1751731112000742 es_ES
dc.description.references Colleau, J.-J., Palhière, I., Rodríguez-Ramilo, S. T., & Legarra, A. (2017). A fast indirect method to compute functions of genomic relationships concerning genotyped and ungenotyped individuals, for diversity management. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0363-9 es_ES
dc.description.references Edel, C., Pimentel, E. C. G., Erbe, M., Emmerling, R., & Götz, K.-U. (2019). Short communication: Calculating analytical reliabilities for single-step predictions. Journal of Dairy Science, 102(4), 3259-3265. doi:10.3168/jds.2018-15707 es_ES
dc.description.references Fernández, E. N., Sánchez, J. P., Martínez, R., Legarra, A., & Baselga, M. (2017). Role of inbreeding depression, non-inbred dominance deviations and random year-season effect in genetic trends for prolificacy in closed rabbit lines. Journal of Animal Breeding and Genetics, 134(6), 441-452. doi:10.1111/jbg.12284 es_ES
dc.description.references Golden, B. L., Brinks, J. S., & Bourdon, R. M. (1991). A performance programmed method for computing inbreeding coefficients from large data sets for use in mixed-model analyses. Journal of Animal Science, 69(9), 3564-3573. doi:10.2527/1991.6993564x es_ES
dc.description.references Groeneveld E. Kovac M. &Wang T.(1990).PEST a general purpose BLUP package for multivariate prediction and estimation. Proceedings of the 4th World Congress on Genetics Applied to Livestock Production Edinburgh 13 488–491. es_ES
dc.description.references Henderson, C. R. (1975). Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics, 31(2), 423. doi:10.2307/2529430 es_ES
dc.description.references Henderson, C. R. (1976). A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics, 32(1), 69. doi:10.2307/2529339 es_ES
dc.description.references Legarra, A., Aguilar, I., & Colleau, J. J. (2020). Short communication: Methods to compute genomic inbreeding for ungenotyped individuals. Journal of Dairy Science, 103(4), 3363-3367. doi:10.3168/jds.2019-17750 es_ES
dc.description.references Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92(9), 4656-4663. doi:10.3168/jds.2009-2061 es_ES
dc.description.references Legarra A. Lourenco D. A. L. &Vitezica Z. G.(2018).Bases for genomic prediction. Retrieved fromhttp://genoweb.toulouse.inra.fr/~alegarra/ es_ES
dc.description.references Masuda, Y., Aguilar, I., Tsuruta, S., & Misztal, I. (2015). Technical note: Acceleration of sparse operations for average-information REML analyses with supernodal methods and sparse-storage refinements1,2. Journal of Animal Science, 93(10), 4670-4674. doi:10.2527/jas.2015-9395 es_ES
dc.description.references Matilainen, K., Strandén, I., Aamand, G. P., & Mäntysaari, E. A. (2018). Single step genomic evaluation for female fertility in Nordic Red dairy cattle. Journal of Animal Breeding and Genetics, 135(5), 337-348. doi:10.1111/jbg.12353 es_ES
dc.description.references Mehrabani-Yeganeh, H., Gibson, J. P., & Schaeffer, L. R. (2000). Including coefficients of inbreeding in BLUP evaluation and its effect on response to selection. Journal of Animal Breeding and Genetics, 117(3), 145-151. doi:10.1046/j.1439-0388.2000.00241.x es_ES
dc.description.references Meyer, K. (2007). WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University SCIENCE B, 8(11), 815-821. doi:10.1631/jzus.2007.b0815 es_ES
dc.description.references Misztal, I., & Wiggans, G. R. (1988). Approximation of Prediction Error Variance in Large-Scale Animal Models. Journal of Dairy Science, 71, 27-32. doi:10.1016/s0022-0302(88)79976-2 es_ES
dc.description.references Mrode, R. A., & Thompson, R. (Eds.). (2005). Linear models for the prediction of animal breeding values. doi:10.1079/9780851990002.0000 es_ES
dc.description.references Pryce, J. E., Gonzalez-Recio, O., Nieuwhof, G., Wales, W. J., Coffey, M. P., Hayes, B. J., & Goddard, M. E. (2015). Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows. Journal of Dairy Science, 98(10), 7340-7350. doi:10.3168/jds.2015-9621 es_ES
dc.description.references Sargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1), 478. doi:10.1186/1471-2164-15-478 es_ES
dc.description.references Strandén, I., Matilainen, K., Aamand, G. P., & Mäntysaari, E. A. (2017). Solving efficiently large single-step genomic best linear unbiased prediction models. Journal of Animal Breeding and Genetics, 134(3), 264-274. doi:10.1111/jbg.12257 es_ES
dc.description.references Ten Napel J. Vandenplas J. Lidauer M. Stranden I. Taskinen M. Mäntysaari E. Veerkamp R. F.(2017).MiXBLUP user‐friendly software for large genetic evaluation systems–Manual V2. Retrived from:https://www.mixblup.eu/documents/Manual%20MiXBLUP%202.1_June%202017_V2.pdf es_ES
dc.description.references Tier B. Schneeberger M. Hammond K. &Fuchs W. C.(1991).Determining the accuracy of estimated breeding values in multiple trait animal models. Proceedings of the 9th AAABG Conference 239–242 es_ES
dc.description.references Van Vleck, L. D. (1993). Variance of prediction error with mixed model equations when relationships are ignored. Theoretical and Applied Genetics, 85(5), 545-549. doi:10.1007/bf00220912 es_ES
dc.description.references VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91(11), 4414-4423. doi:10.3168/jds.2007-0980 es_ES
dc.description.references Xiang, T., Christensen, O. F., & Legarra, A. (2017). Technical note: Genomic evaluation for crossbred performance in a single-step approach with metafounders1. Journal of Animal Science, 95(4), 1472-1480. doi:10.2527/jas.2016.1155 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem