Larroza, A.; Moliner, L.; Álvarez-Gómez, JM.; Oliver-Gil, S.; Espinós-Morató, H.; Vergara-Díaz, M.; Rodríguez-Álvarez, MJ. (2019). Deep learning for MRI-based CT synthesis: a comparison of MRI sequences and neural network architectures. IEEE. 1-4. https://doi.org/10.1109/NSS/MIC42101.2019.9060051
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/169674
Title:
|
Deep learning for MRI-based CT synthesis: a comparison of MRI sequences and neural network architectures
|
Author:
|
Larroza, Andrés
Moliner, Laura
Álvarez-Gómez, Juan Manuel
Oliver-Gil, Sandra
Espinós-Morató, Héctor
Vergara-Díaz, Marina
Rodríguez-Álvarez, María J.
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
|
Issued date:
|
|
Abstract:
|
[EN] Synthetic computed tomography (CT) images
derived from magnetic resonance images (MRI) are of interest
for radiotherapy planning and positron emission tomography
(PET) attenuation correction. In recent years, deep ...[+]
[EN] Synthetic computed tomography (CT) images
derived from magnetic resonance images (MRI) are of interest
for radiotherapy planning and positron emission tomography
(PET) attenuation correction. In recent years, deep learning
implementations have demonstrated improvement over atlasbased and segmentation-based methods. Nevertheless, several
open questions remain to be addressed, such as which is the best
of MRI sequences and neural network architectures. In this
work, we compared the performance of different combinations
of two common MRI sequences (T1- and T2-weighted), and
three state-of-the-art neural networks designed for medical
image processing (Vnet, HighRes3dNet and ScaleNet). The
experiments were conducted on brain datasets from a public
database. Our results suggest that T1 images perform better
than T2, but the results further improve when combining both
sequences. The lowest mean average error over the entire head
(MAE = 101.76 ± 10.4 HU) was achieved combining T1 and T2
scans with HighRes3dNet. All tested deep learning models
achieved significantly lower MAE (p < 0.01) than a well-known
atlas-based method.
[-]
|
Copyrigths:
|
Reserva de todos los derechos
|
ISBN:
|
978-1-7281-4164-0
|
Source:
|
2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). (issn:
2577-0829
)
|
DOI:
|
10.1109/NSS/MIC42101.2019.9060051
|
Publisher:
|
IEEE
|
Publisher version:
|
https://doi.org/10.1109/NSS/MIC42101.2019.9060051
|
Conference name:
|
IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019)
|
Conference place:
|
Manchester, UK
|
Conference date:
|
Octubre 26-Noviembre 02,2019
|
Project ID:
|
info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-2-R/ES/DESARROLLO DEL SOFTWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE STRESS/
info:eu-repo/grantAgreement/MINECO//RTC-2016-5186-1/ES/Control objetivo del deterioro cognitivo mediante análisis de imagen de amiloide/
|
Thanks:
|
This work was supported by the Spanish Government grants TEC2016-79884-C2 and RTC-2016-5186-1, and by the European Union through the European Regional Development Fund (ERDF)
|
Type:
|
Comunicación en congreso
Artículo
Capítulo de libro
|