- -

An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns?

Show simple item record

Files in this item

dc.contributor.author Sanchez-Caballero, Samuel es_ES
dc.contributor.author Sellés Cantó, Miguel Ángel es_ES
dc.contributor.author Peydro, M. A. es_ES
dc.contributor.author Pérez Bernabeu, Elena es_ES
dc.date.accessioned 2021-07-22T03:33:36Z
dc.date.available 2021-07-22T03:33:36Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169736
dc.description.abstract [EN] The present work develops an accurate prediction model of the COVID-19 pandemic, capable not only of fitting data with a high regression coefficient but also to predict the overall infections and the infection peak day as well. The model is based on the Verhulst equation, which has been used to fit the data of the COVID-19 spread in China, Italy, and Spain. This model has been used to predict both the infection peak day, and the total infected people in Italy and Spain. With this prediction model, the overall infections, the infection peak, and date can accurately be predicted one week before they occur. According to the study, the infection peak took place on 23 March in Italy, and on 29 March in Spain. Moreover, the influence of the total and partial lockdowns has been studied, without finding any meaningful difference in the disease spread. However, the infected population, and the rate of new infections at the start of the lockdown, seem to play an important role in the infection spread. The developed model is not only an important tool to predict the disease spread, but also gives some significant clues about the main factors that affect to the COVID-19 spread, and quantifies the effects of partial and total lockdowns as well. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of Clinical Medicine es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Coronavirus es_ES
dc.subject COVID-19 es_ES
dc.subject Prediction es_ES
dc.subject Forecast es_ES
dc.subject Model es_ES
dc.subject China es_ES
dc.subject Spain es_ES
dc.subject Italy es_ES
dc.subject UK es_ES
dc.subject France es_ES
dc.subject Germany es_ES
dc.subject SARS-CoV-2 es_ES
dc.subject Verhulst es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jcm9051547 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Sanchez-Caballero, S.; Sellés Cantó, MÁ.; Peydro, MA.; Pérez Bernabeu, E. (2020). An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns?. Journal of Clinical Medicine. 9(5):1-18. https://doi.org/10.3390/jcm9051547 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jcm9051547 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2077-0383 es_ES
dc.identifier.pmid 32443871 es_ES
dc.identifier.pmcid PMC7290738 es_ES
dc.relation.pasarela S\412737 es_ES


This item appears in the following Collection(s)

Show simple item record