- -

Interactive spaces for children: gesture elicitation for controlling ground mini-robots

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Interactive spaces for children: gesture elicitation for controlling ground mini-robots

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons Tomás, Patricia es_ES
dc.contributor.author Jaén Martínez, Francisco Javier es_ES
dc.date.accessioned 2021-07-22T03:33:40Z
dc.date.available 2021-07-22T03:33:40Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 1868-5137 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169739
dc.description.abstract [EN] Interactive spaces for education are emerging as a mechanism for fostering children's natural ways of learning by means of play and exploration in physical spaces. The advanced interactive modalities and devices for such environments need to be both motivating and intuitive for children. Among the wide variety of interactive mechanisms, robots have been a popular research topic in the context of educational tools due to their attractiveness for children. However, few studies have focused on how children would naturally interact and explore interactive environments with robots. While there is abundant research on full-body interaction and intuitive manipulation of robots by adults, no similar research has been done with children. This paper therefore describes a gesture elicitation study that identified the preferred gestures and body language communication used by children to control ground robots. The results of the elicitation study were used to define a gestural language that covers the different preferences of the gestures by age group and gender, with a good acceptance rate in the 6-12 age range. The study also revealed interactive spaces with robots using body gestures as motivating and promising scenarios for collaborative or remote learning activities. es_ES
dc.description.sponsorship This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by the Spanish MINECO (TIN2014-60077-R). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks are due to the children and teachers of the Col-legi Public Vicente Gaos for their valuable collaboration and dedication. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Journal of Ambient Intelligence and Humanized Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Elicitation study es_ES
dc.subject Participatory design es_ES
dc.subject Natural user interface es_ES
dc.subject Child computer interaction es_ES
dc.subject Interactive space es_ES
dc.subject Robot es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Interactive spaces for children: gesture elicitation for controlling ground mini-robots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12652-019-01290-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F03831/ES/FPU13%2F03831/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-60077-R/ES/SISTEMA DE TERAPIAS DE JUEGO BASADO EN SUPERFICIES INTERACTIVAS PARA LA MEJORA DEL IMPACTO EMOCIONAL DERIVADO DE LA HOSPITALIZACION PEDIATRICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Pons Tomás, P.; Jaén Martínez, FJ. (2020). Interactive spaces for children: gesture elicitation for controlling ground mini-robots. Journal of Ambient Intelligence and Humanized Computing. 11(6):2467-2488. https://doi.org/10.1007/s12652-019-01290-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12652-019-01290-6 es_ES
dc.description.upvformatpinicio 2467 es_ES
dc.description.upvformatpfin 2488 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\427207 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alborzi H, Hammer J, Kruskal A et al (2000) Designing StoryRooms: interactive storytelling spaces for children. In: Proceedings of the conference on designing interactive systems processes, practices, methods, and techniques—DIS’00. ACM Press, New York, pp 95–104 es_ES
dc.description.references Antle AN, Corness G, Droumeva M (2009) What the body knows: exploring the benefits of embodied metaphors in hybrid physical digital environments. Interact Comput 21:66–75. https://doi.org/10.1016/j.intcom.2008.10.005 es_ES
dc.description.references Belpaeme T, Baxter PE, Read R et al (2013) Multimodal child–robot interaction: building social bonds. J Human-Robot Interact 1:33–53. https://doi.org/10.5898/JHRI.1.2.Belpaeme es_ES
dc.description.references Benko H, Wilson AD, Zannier F, Benko H (2014) Dyadic projected spatial augmented reality. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 645–655 es_ES
dc.description.references Bobick AF, Intille SS, Davis JW et al (1999) The KidsRoom: a perceptually-based interactive and immersive story environment. Presence Teleoper Virtual Environ 8:367–391. https://doi.org/10.1162/105474699566297 es_ES
dc.description.references Bonarini A, Clasadonte F, Garzotto F, Gelsomini M (2015) Blending robots and full-body interaction with large screens for children with intellectual disability. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 351–354 es_ES
dc.description.references Cauchard JR, E JL, Zhai KY, Landay JA (2015) Drone & me: an exploration into natural human–drone interaction. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’15. ACM Press, New York, pp 361–365 es_ES
dc.description.references Connell S, Kuo P-Y, Liu L, Piper AM (2013) A Wizard-of-Oz elicitation study examining child-defined gestures with a whole-body interface. In: Proceedings of the 12th international conference on interaction design and children—IDC’13. ACM Press, New York, pp 277–280 es_ES
dc.description.references Derboven J, Van Mechelen M, Slegers K (2015) Multimodal analysis in participatory design with children. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 2825–2828 es_ES
dc.description.references Dong H, Danesh A, Figueroa N, El Saddik A (2015) An elicitation study on gesture preferences and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 3:543–555. https://doi.org/10.1109/ACCESS.2015.2432679 es_ES
dc.description.references Druin A (1999) Cooperative inquiry: developing new technologies for children with children. In: Proceedings of the SIGCHI conference on human factors computer system CHI is limit—CHI’99, vol 14, pp 592–599. https://doi.org/10.1145/302979.303166 es_ES
dc.description.references Druin A (2002) The role of children in the design of new technology. Behav Inf Technol 21:1–25. https://doi.org/10.1080/01449290110108659 es_ES
dc.description.references Druin A, Bederson B, Boltman A et al (1999) Children as our technology design partners. In: Druin A (ed) The design of children’s technology. Morgan Kaufman, San Francisco, pp 51–72 es_ES
dc.description.references Epps J, Lichman S, Wu M (2006) A study of hand shape use in tabletop gesture interaction. CHI’06 extended abstracts on human factors in computing systems—CHI EA’06. ACM Press, New York, pp 748–753 es_ES
dc.description.references Fender AR, Benko H, Wilson A (2017) MeetAlive : room-scale omni-directional display system for multi-user content and control sharing. In: Proceedings of the 2017 ACM international conference on interactive surfaces and spaces, pp 106–115 es_ES
dc.description.references Fernandez RAS, Sanchez-Lopez JL, Sampedro C et al (2016) Natural user interfaces for human–drone multi-modal interaction. In: 2016 international conference on unmanned aircraft systems (ICUAS). IEEE, New York, pp 1013–1022 es_ES
dc.description.references Garcia-Sanjuan F, Jaen J, Nacher V, Catala A (2015) Design and evaluation of a tangible-mediated robot for kindergarten instruction. In: Proceedings of the 12th international conference on advances in computer entertainment technology—ACE’15. ACM Press, New York, pp 1–11 es_ES
dc.description.references Garcia-Sanjuan F, Jaen J, Jurdi S (2016) Towards encouraging communication in hospitalized children through multi-tablet activities. In: Proceedings of the XVII international conference on human computer interaction, pp 29.1–29.4 es_ES
dc.description.references Gindling J, Ioannidou A, Loh J et al (1995) LEGOsheets: a rule-based programming, simulation and manipulation environment for the LEGO programmable brick. In: Proceedings of symposium on visual languages. IEEE Computer Society Press, New York, pp 172–179 es_ES
dc.description.references Gonzalez B, Borland J, Geraghty K (2009) Whole body interaction for child-centered multimodal language learning. In: Proceedings of the 2nd workshop on child, computer and interaction—WOCCI’09. ACM Press, New York, pp 1–5 es_ES
dc.description.references Grønbæk K, Iversen OS, Kortbek KJ et al (2007) Interactive floor support for kinesthetic interaction in children learning environments. In: Human–computer interaction—INTERACT 2007. Lecture notes in computer science, pp 361–375 es_ES
dc.description.references Guha ML, Druin A, Chipman G et al (2005) Working with young children as technology design partners. Commun ACM 48:39–42. https://doi.org/10.1145/1039539.1039567 es_ES
dc.description.references Hansen JP, Alapetite A, MacKenzie IS, Møllenbach E (2014) The use of gaze to control drones. In: Proceedings of the symposium on eye tracking research and applications—ETRA’14. ACM Press, New York, pp 27–34 es_ES
dc.description.references Henkemans OAB, Bierman BPB, Janssen J et al (2017) Design and evaluation of a personal robot playing a self-management education game with children with diabetes type 1. Int J Hum Comput Stud 106:63–76. https://doi.org/10.1016/j.ijhcs.2017.06.001 es_ES
dc.description.references Horn MS, Crouser RJ, Bers MU (2011) Tangible interaction and learning: the case for a hybrid approach. Pers Ubiquitous Comput 16:379–389. https://doi.org/10.1007/s00779-011-0404-2 es_ES
dc.description.references Hourcade JP (2015) Child computer interaction. CreateSpace Independent Publishing Platform, North Charleston es_ES
dc.description.references Höysniemi J, Hämäläinen P, Turkki L (2004) Wizard of Oz prototyping of computer vision based action games for children. Proceeding of the 2004 conference on interaction design and children building a community—IDC’04. ACM Press, New York, pp 27–34 es_ES
dc.description.references Höysniemi J, Hämäläinen P, Turkki L, Rouvi T (2005) Children’s intuitive gestures in vision-based action games. Commun ACM 48:44–50. https://doi.org/10.1145/1039539.1039568 es_ES
dc.description.references Hsiao H-S, Chen J-C (2016) Using a gesture interactive game-based learning approach to improve preschool children’s learning performance and motor skills. Comput Educ 95:151–162. https://doi.org/10.1016/j.compedu.2016.01.005 es_ES
dc.description.references Jokela T, Rezaei PP, Väänänen K (2016) Using elicitation studies to generate collocated interaction methods. In: Proceedings of the 18th international conference on human–computer interaction with mobile devices and services adjunct, pp 1129–1133. https://doi.org/10.1145/2957265.2962654 es_ES
dc.description.references Jones B, Benko H, Ofek E, Wilson AD (2013) IllumiRoom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI’13, pp 869–878 es_ES
dc.description.references Jones B, Shapira L, Sodhi R et al (2014) RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 637–644 es_ES
dc.description.references Kaminski M, Pellino T, Wish J (2002) Play and pets: the physical and emotional impact of child-life and pet therapy on hospitalized children. Child Heal Care 31:321–335. https://doi.org/10.1207/S15326888CHC3104_5 es_ES
dc.description.references Karam M, Schraefel MC (2005) A taxonomy of gestures in human computer interactions. In: Technical report in electronics and computer science, pp 1–45 es_ES
dc.description.references Kistler F, André E (2013) User-defined body gestures for an interactive storytelling scenario. Lect Notes Comput Sci (including subser Lect Notes Artif Intell Lect Notes Bioinform) 8118:264–281. https://doi.org/10.1007/978-3-642-40480-1_17 es_ES
dc.description.references Konda KR, Königs A, Schulz H, Schulz D (2012) Real time interaction with mobile robots using hand gestures. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 177–178 es_ES
dc.description.references Kray C, Nesbitt D, Dawson J, Rohs M (2010) User-defined gestures for connecting mobile phones, public displays, and tabletops. In: Proceedings of the 12th international conference on human computer interaction with mobile devices and services—MobileHCI’10. ACM Press, New York, pp 239–248 es_ES
dc.description.references Kurdyukova E, Redlin M, André E (2012) Studying user-defined iPad gestures for interaction in multi-display environment. In: Proceedings of the 2012 ACM international conference on intelligent user interfaces—IUI’12. ACM Press, New York, pp 93–96 es_ES
dc.description.references Lambert V, Coad J, Hicks P, Glacken M (2014) Social spaces for young children in hospital. Child Care Health Dev 40:195–204. https://doi.org/10.1111/cch.12016 es_ES
dc.description.references Lee S-S, Chae J, Kim H et al (2013) Towards more natural digital content manipulation via user freehand gestural interaction in a living room. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’13. ACM Press, New York, p 617 es_ES
dc.description.references Malinverni L, Mora-Guiard J, Pares N (2016) Towards methods for evaluating and communicating participatory design: a multimodal approach. Int J Hum Comput Stud 94:53–63. https://doi.org/10.1016/j.ijhcs.2016.03.004 es_ES
dc.description.references Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491 es_ES
dc.description.references Marco J, Cerezo E, Baldassarri S et al (2009) Bringing tabletop technologies to kindergarten children. In: Proceedings of the 23rd British HCI Group annual conference on people and computers: celebrating people and technology, pp 103–111 es_ES
dc.description.references Michaud F, Caron S (2002) Roball, the rolling robot. Auton Robots 12:211–222. https://doi.org/10.1023/A:1014005728519 es_ES
dc.description.references Micire M, Desai M, Courtemanche A et al (2009) Analysis of natural gestures for controlling robot teams on multi-touch tabletop surfaces. In: Proceedings of the ACM international conference on interactive tabletops and surfaces—ITS’09. ACM Press, New York, pp 41–48 es_ES
dc.description.references Mora-Guiard J, Crowell C, Pares N, Heaton P (2016) Lands of fog: helping children with autism in social interaction through a full-body interactive experience. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 262–274 es_ES
dc.description.references Morris MR (2012) Web on the wall: insights from a multimodal interaction elicitation study. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces. ACM Press, New York, pp 95–104 es_ES
dc.description.references Morris MR, Wobbrock JO, Wilson AD (2010) Understanding users’ preferences for surface gestures. Proc Graph Interface 2010:261–268 es_ES
dc.description.references Nacher V, Garcia-Sanjuan F, Jaen J (2016) Evaluating the usability of a tangible-mediated robot for kindergarten children instruction. In: 2016 IEEE 16th international conference on advanced learning technologies (ICALT). IEEE, New York, pp 130–132 es_ES
dc.description.references Nahapetyan VE, Khachumov VM (2015) Gesture recognition in the problem of contactless control of an unmanned aerial vehicle. Optoelectron Instrum Data Process 51:192–197. https://doi.org/10.3103/S8756699015020132 es_ES
dc.description.references Obaid M, Häring M, Kistler F et al (2012) User-defined body gestures for navigational control of a humanoid robot. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 367–377 es_ES
dc.description.references Obaid M, Kistler F, Häring M et al (2014) A framework for user-defined body gestures to control a humanoid robot. Int J Soc Robot 6:383–396. https://doi.org/10.1007/s12369-014-0233-3 es_ES
dc.description.references Obaid M, Kistler F, Kasparavičiūtė G, et al (2016) How would you gesture navigate a drone?: a user-centered approach to control a drone. In: Proceedings of the 20th international academic Mindtrek conference—AcademicMindtrek’16. ACM Press, New York, pp 113–121 es_ES
dc.description.references Pares N, Soler M, Sanjurjo À et al (2005) Promotion of creative activity in children with severe autism through visuals in an interactive multisensory environment. In: Proceeding of the 2005 conference on interaction design and children—IDC’05. ACM Press, New York, pp 110–116 es_ES
dc.description.references Pfeil K, Koh SL, LaViola J (2013) Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles. In: Proceedings of the 2013 international conference on intelligent user interfaces—IUI’13, pp 257–266. https://doi.org/10.1145/2449396.2449429 es_ES
dc.description.references Piaget J (1956) The child’s conception of space. Norton, New York es_ES
dc.description.references Piaget J (1973) The child and reality: problems of genetic psychology. Grossman, New York es_ES
dc.description.references Piumsomboon T, Clark A, Billinghurst M, Cockburn A (2013) User-defined gestures for augmented reality. CHI’13 extended abstracts on human factors in computing systems—CHI EA’13. ACM Press, New York, pp 955–960 es_ES
dc.description.references Pons P, Carrión A, Jaen J (2018) Remote interspecies interactions: improving humans and animals’ wellbeing through mobile playful spaces. Pervasive Mob Comput. https://doi.org/10.1016/j.pmcj.2018.12.003 es_ES
dc.description.references Puranam MB (2005) Towards full-body gesture analysis and recognition. University of Kentucky, Lexington es_ES
dc.description.references Pyryeskin D, Hancock M, Hoey J (2012) Comparing elicited gestures to designer-created gestures for selection above a multitouch surface. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, pp 1–10 es_ES
dc.description.references Raffle HS, Parkes AJ, Ishii H (2004) Topobo: a constructive assembly system with kinetic memory. System 6:647–654. https://doi.org/10.1145/985692.985774 es_ES
dc.description.references Read JC, Markopoulos P (2013) Child–computer interaction. Int J Child-Comput Interact 1:2–6. https://doi.org/10.1016/j.ijcci.2012.09.001 es_ES
dc.description.references Read JC, Macfarlane S, Casey C (2002) Endurability, engagement and expectations: measuring children’s fun. In: Interaction design and children, pp 189–198 es_ES
dc.description.references Read JC, Markopoulos P, Parés N et al (2008) Child computer interaction. In: Proceeding of the 26th annual CHI conference extended abstracts on human factors in computing systems—CHI’08. ACM Press, New York, pp 2419–2422 es_ES
dc.description.references Robins B, Dautenhahn K (2014) Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. Int J Soc Robot 6:397–415. https://doi.org/10.1007/s12369-014-0228-0 es_ES
dc.description.references Robins B, Dautenhahn K, Te Boekhorst R, Nehaniv CL (2008) Behaviour delay and robot expressiveness in child–robot interactions: a user study on interaction kinesics. In: Proceedings of the 3rd ACMIEEE international conference on human robot interaction, pp 17–24. https://doi.org/10.1145/1349822.1349826 es_ES
dc.description.references Ruiz J, Li Y, Lank E (2011) User-defined motion gestures for mobile interaction. In: Proceedings of the 2011 annual conference on human factors in computing systems—CHI’11. ACM Press, New York, p 197 es_ES
dc.description.references Rust K, Malu M, Anthony L, Findlater L (2014) Understanding childdefined gestures and children’s mental models for touchscreen tabletop interaction. In: Proceedings of the 2014 conference on interaction design and children—IDC’14. ACM Press, New York, pp 201–204 es_ES
dc.description.references Salter T, Dautenhahn K, Te Boekhorst R (2006) Learning about natural human-robot interaction styles. Robot Auton Syst 54:127–134. https://doi.org/10.1016/j.robot.2005.09.022 es_ES
dc.description.references Sanghvi J, Castellano G, Leite I et al (2011) Automatic analysis of affective postures and body motion to detect engagement with a game companion. In: Proceedings of the 6th international conference on human–robot interaction—HRI’11. ACM Press, New York, pp 305–311 es_ES
dc.description.references Sanna A, Lamberti F, Paravati G, Manuri F (2013) A Kinect-based natural interface for quadrotor control. Entertain Comput 4:179–186. https://doi.org/10.1016/j.entcom.2013.01.001 es_ES
dc.description.references Sato E, Yamaguchi T, Harashima F (2007) Natural interface using pointing behavior for human–robot gestural interaction. IEEE Trans Ind Electron 54:1105–1112. https://doi.org/10.1109/TIE.2007.892728 es_ES
dc.description.references Schaper M-M, Pares N (2016) Making sense of body and space through full-body interaction design. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 613–618 es_ES
dc.description.references Schaper M-M, Malinverni L, Pares N (2015) Sketching through the body: child-generated gestures in full-body interaction design. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 255–258 es_ES
dc.description.references Seyed T, Burns C, Costa Sousa M et al (2012) Eliciting usable gestures for multi-display environments. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, p 41 es_ES
dc.description.references Shimon SSA, Morrison-Smith S, John N et al (2015) Exploring user-defined back-of-device gestures for mobile devices. In: Proceedings of the 17th international conference on human–computer interaction with mobile devices and services—MobileHCI’15. ACM Press, New York, pp 227–232 es_ES
dc.description.references Sipitakiat A, Nusen N (2012) Robo-blocks: a tangible programming system with debugging for children. In: Proceedings of the 11th international conference on interaction design and children—IDC’12. ACM Press, New York, p 98 es_ES
dc.description.references Soler-Adillon J, Ferrer J, Pares N (2009) A novel approach to interactive playgrounds: the interactive slide project. In: Proceedings of the 8th international conference on interaction design and children—IDC’09. ACM Press, New York, pp 131–139 es_ES
dc.description.references Stiefelhagen R, Fogen C, Gieselmann P et al (2004) Natural human–robot interaction using speech, head pose and gestures. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No. 04CH37566). IEEE, New York, pp 2422–2427 es_ES
dc.description.references Subrahmanyam K, Greenfield PM (1994) Effect of video game practice on spatial skills in girls and boys. J Appl Dev Psychol 15:13–32. https://doi.org/10.1016/0193-3973(94)90004-3 es_ES
dc.description.references Sugiyama J, Tsetserukou D, Miura J (2011) NAVIgoid: robot navigation with haptic vision. In: SIGGRAPH Asia 2011 emerging technologies SA’11, vol 15, p 4503. https://doi.org/10.1145/2073370.2073378 es_ES
dc.description.references Takahashi T, Morita M, Tanaka F (2012) Evaluation of a tricycle-style teleoperational interface for children: a comparative experiment with a video game controller. In: 2012 IEEE RO-MAN: the 21st IEEE international symposium on robot and human interactive communication. IEEE, New York, pp 334–338 es_ES
dc.description.references Tanaka F, Takahashi T (2012) A tricycle-style teleoperational interface that remotely controls a robot for classroom children. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 255–256 es_ES
dc.description.references Tjaden L, Tong A, Henning P et al (2012) Children’s experiences of dialysis: a systematic review of qualitative studies. Arch Dis Child 97:395–402. https://doi.org/10.1136/archdischild-2011-300639 es_ES
dc.description.references Vatavu R-D (2012) User-defined gestures for free-hand TV control. In: Proceedings of the 10th European conference on interactive TV and video—EuroiTV’12. ACM Press, New York, pp 45–48 es_ES
dc.description.references Vatavu R-D (2017) Smart-Pockets: body-deictic gestures for fast access to personal data during ambient interactions. Int J Hum Comput Stud 103:1–21. https://doi.org/10.1016/j.ijhcs.2017.01.005 es_ES
dc.description.references Vatavu R-D, Wobbrock JO (2015) Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 1325–1334 es_ES
dc.description.references Vatavu R-D, Wobbrock JO (2016) Between-subjects elicitation studies: formalization and tool support. In: Proceedings of the 2016 CHI conference on human factors in computing systems—CHI’16. ACM Press, New York, pp 3390–3402 es_ES
dc.description.references Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270. https://doi.org/10.1037/0033-2909.117.2.250 es_ES
dc.description.references Wainer J, Robins B, Amirabdollahian F, Dautenhahn K (2014) Using the humanoid robot KASPAR to autonomously play triadic games and facilitate collaborative play among children with autism. IEEE Trans Auton Ment Dev 6:183–199. https://doi.org/10.1109/TAMD.2014.2303116 es_ES
dc.description.references Wang Y, Zhang L (2015) A track-based gesture recognition algorithm for Kinect. Appl Mech Mater 738–7399:334–338. https://doi.org/10.4028/www.scientific.net/AMM.738-739.334 es_ES
dc.description.references Wilson AD, Benko H (2010) Combining multiple depth cameras and projectors for interactions on, above and between surfaces. In: Proceedings of the 23rd annual ACM symposium on user interface software and technology—UIST’10. ACM Press, New York, pp 273–282 es_ES
dc.description.references Wobbrock JO, Hall MG, Wilson AD (2007) Gestures without libraries, toolkits or training : a $ 1 recognizer for user interface prototypes. In: Proceedings of the 20th annual ACM symposium on user interface software and technology, pp 159–168 es_ES
dc.description.references Wobbrock JO, Morris MR, Wilson AD (2009) User-defined gestures for surface computing. In: Proceedings of the 27th international conference on human factors in computing systems—CHI 09. ACM Press, New York, pp 1083–1092 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem