- -

Resistance to 'Candidatus Liberibacter asiaticus,' the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resistance to 'Candidatus Liberibacter asiaticus,' the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alves, Monica N. es_ES
dc.contributor.author Lopes, Silvio A. es_ES
dc.contributor.author Raiol-Junior, Laudecir L. es_ES
dc.contributor.author Wulff, Nelson A. es_ES
dc.contributor.author Girardi, Eduardo A. es_ES
dc.contributor.author Ollitrault, Patrick es_ES
dc.contributor.author PEÑA GARCIA, LEANDRO es_ES
dc.date.accessioned 2021-07-22T03:33:45Z
dc.date.available 2021-07-22T03:33:45Z
dc.date.issued 2021-01-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169742
dc.description.abstract [EN] Huanglongbing (HLB) is the most destructive, yet incurable disease of citrus. Finding sources of genetic resistance to HLB-associated 'Candidatus Liberibacter asiaticus' (Las) becomes strategic to warrant crop sustainability, but no resistant Citrus genotypes exist. Some Citrus relatives of the family Rutaceae, subfamily Aurantioideae, were described as full-resistant to Las, but they are phylogenetically far, thus incompatible with Citrus. Partial resistance was indicated for certain cross-compatible types. Moreover, other genotypes from subtribe Citrinae, sexually incompatible but graft-compatible with Citrus, may provide new rootstocks able to restrict bacterial titer in the canopy. Use of seedlings from monoembryonic species and inconsistencies in previous reports likely due to Las recalcitrance encouraged us to evaluate more accurately these Citrus relatives. We tested for Las resistance a diverse collection of graft-compatible Citrinae species using an aggressive and consistent challenge-inoculation and evaluation procedure. Most Citrinae species examined were either susceptible or partially resistant to Las. However, Eremocitrus glauca and Papua/New Guinea Microcitrus species as well as their hybrids and those with Citrus arose here for the first time as full-resistant, opening the way for using these underutilized genotypes as Las resistance sources in breeding programs or attempting using them directly as possible new Las-resistant Citrus rootstocks or interstocks. es_ES
dc.description.sponsorship This work was funded by Fundecitrus, grant no. 817526 from the European Union H2020 Innovation Action Program and project PID2019-104569RB-I00 from the AEI-Spain. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject HLB es_ES
dc.subject Greening es_ES
dc.subject Rutaceae es_ES
dc.subject Citrus breeding es_ES
dc.subject Aurantioideae es_ES
dc.subject Microcitrus es_ES
dc.subject Eremocitrus es_ES
dc.title Resistance to 'Candidatus Liberibacter asiaticus,' the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2020.617664 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/817526/EU/PREVENTING HLB EPIDEMICS FOR ENSURING CITRUS SURVIVAL IN EUROPE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104569RB-I00/ES/MEJORA GENETICA DE PORTAINJERTOS CITRICOS PARA GENERAR RESISTENCIA A VIEJAS Y NUEVAS ENFERMEDADES EMERGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Alves, MN.; Lopes, SA.; Raiol-Junior, LL.; Wulff, NA.; Girardi, EA.; Ollitrault, P.; Peña Garcia, L. (2021). Resistance to 'Candidatus Liberibacter asiaticus,' the Huanglongbing Associated Bacterium, in Sexually and/or Graft-Compatible Citrus Relatives. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.617664 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2020.617664 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 33488659 es_ES
dc.identifier.pmcid PMC7820388 es_ES
dc.relation.pasarela S\432144 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Fundo de Defesa da Citricultura es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Albrecht, U., & Bowman, K. D. (2012). Tolerance of trifoliate citrus rootstock hybrids to Candidatus Liberibacter asiaticus. Scientia Horticulturae, 147, 71-80. doi:10.1016/j.scienta.2012.08.036 es_ES
dc.description.references Bassanezi, R. B., Lopes, S. A., de Miranda, M. P., Wulff, N. A., Volpe, H. X. L., & Ayres, A. J. (2020). Overview of citrus huanglongbing spread and management strategies in Brazil. Tropical Plant Pathology, 45(3), 251-264. doi:10.1007/s40858-020-00343-y es_ES
dc.description.references Bayer, R. J., Mabberley, D. J., Morton, C., Miller, C. H., Sharma, I. K., Pfeil, B. E., … Sykes, S. (2009). A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences. American Journal of Botany, 96(3), 668-685. doi:10.3732/ajb.0800341 es_ES
dc.description.references Bowman, K. D., Faulkner, L., & Kesinger, M. (2016). New Citrus Rootstocks Released by USDA 2001–2010: Field Performance and Nursery Characteristics. HortScience, 51(10), 1208-1214. doi:10.21273/hortsci10970-16 es_ES
dc.description.references Carbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., & Dopazo, J. (2015). A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the GenusCitrus. Molecular Biology and Evolution, 32(8), 2015-2035. doi:10.1093/molbev/msv082 es_ES
dc.description.references Cifuentes-Arenas, J. C., Beattie, G. A. C., Peña, L., & Lopes, S. A. (2019). Murraya paniculata and Swinglea glutinosa as Short-Term Transient Hosts of ‘Candidatus Liberibacter asiaticus’ and Implications for the Spread of Huanglongbing. Phytopathology®, 109(12), 2064-2073. doi:10.1094/phyto-06-19-0216-r es_ES
dc.description.references Cifuentes-Arenas, J. C., de Goes, A., de Miranda, M. P., Beattie, G. A. C., & Lopes, S. A. (2018). Citrus flush shoot ontogeny modulates biotic potential of Diaphorina citri. PLOS ONE, 13(1), e0190563. doi:10.1371/journal.pone.0190563 es_ES
dc.description.references Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Pompeu, J., Machado, M. A., … Muller, G. W. (2004). First Report of the Causal Agent of Huanglongbing («Candidatus Liberibacter asiaticus») in Brazil. Plant Disease, 88(12), 1382-1382. doi:10.1094/pdis.2004.88.12.1382c es_ES
dc.description.references Graca, J. V. (1991). Citrus Greening Disease. Annual Review of Phytopathology, 29(1), 109-136. doi:10.1146/annurev.py.29.090191.000545 es_ES
dc.description.references Desjardins, P., & Conklin, D. (2010). NanoDrop Microvolume Quantitation of Nucleic Acids. Journal of Visualized Experiments, (-1). doi:10.3791/2565 es_ES
dc.description.references Fanciullino, A.-L., Gancel, A.-L., Froelicher, Y., Luro, F., Ollitrault, P., & Brillouet, J.-M. (2005). Effects of Nucleo-cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. Journal of Agricultural and Food Chemistry, 53(11), 4517-4523. doi:10.1021/jf0502855 es_ES
dc.description.references Fang, D. Q., Roose, M. L., Krueger, R. R., & Federici, C. T. (1997). Fingerprinting trifoliate orange germ plasm accessions with isozymes, RFLPs, and inter-simple sequence repeat markers. Theoretical and Applied Genetics, 95(1-2), 211-219. doi:10.1007/s001220050550 es_ES
dc.description.references Felisberto, P. A., Girardi, E. A., Peña, L., Felisberto, G., Beattie, G. A., & Lopes, S. A. (2019). Unsuitability of indigenous South American Rutaceae as potential hosts of Diaphorina citri. Pest Management Science, 75(7), 1911-1920. doi:10.1002/ps.5304 es_ES
dc.description.references Folimonova, S. Y., Robertson, C. J., Garnsey, S. M., Gowda, S., & Dawson, W. O. (2009). Examination of the Responses of Different Genotypes of Citrus to Huanglongbing (Citrus Greening) Under Different Conditions. Phytopathology®, 99(12), 1346-1354. doi:10.1094/phyto-99-12-1346 es_ES
dc.description.references FROELICHER, Y., DAMBIER, D., BASSENE, J. B., COSTANTINO, G., LOTFY, S., DIDOUT, C., … OLLITRAULT, P. (2008). Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Molecular Ecology Resources, 8(1), 119-122. doi:10.1111/j.1471-8286.2007.01893.x es_ES
dc.description.references Garcia-Lor, A., Curk, F., Snoussi-Trifa, H., Morillon, R., Ancillo, G., Luro, F., … Ollitrault, P. (2012). A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species. Annals of Botany, 111(1), 1-19. doi:10.1093/aob/mcs227 es_ES
dc.description.references Gasparoto, M. C. G., Coletta-Filho, H. D., Bassanezi, R. B., Lopes, S. A., Lourenço, S. A., & Amorim, L. (2012). Influence of temperature on infection and establishment of ‘Candidatus Liberibacter americanus’ and ‘Candidatus Liberibacter asiaticus’ in citrus plants. Plant Pathology, 61(4), 658-664. doi:10.1111/j.1365-3059.2011.02569.x es_ES
dc.description.references Gottwald, T. R. (1989). Preliminary Analysis of Citrus Greening (Huanglungbin) Epidemics in the People’s Republic of China and French Reunion Island. Phytopathology, 79(6), 687. doi:10.1094/phyto-79-687 es_ES
dc.description.references Gottwald, T. R., Graça, J. V. da, & Bassanezi, R. B. (2007). Citrus Huanglongbing: The Pathogen and Its Impact. Plant Health Progress, 8(1), 31. doi:10.1094/php-2007-0906-01-rv es_ES
dc.description.references Hall, D. G., Albrecht, U., & Bowman, K. D. (2016). Transmission Rates of ‘Ca.Liberibacter asiaticus’ by Asian Citrus Psyllid Are Enhanced by the Presence and Developmental Stage of Citrus Flush. Journal of Economic Entomology, 109(2), 558-563. doi:10.1093/jee/tow009 es_ES
dc.description.references Hall, D. G., George, J., & Lapointe, S. L. (2015). Further investigations on colonization of Poncirus trifoliata by the Asian citrus psyllid. Crop Protection, 72, 112-118. doi:10.1016/j.cropro.2015.03.010 es_ES
dc.description.references Hall, D. G., Hentz, M. G., & Stover, E. (2017). Field Survey of Asian Citrus Psyllid (Hemiptera: Liviidae) Infestations Associated with Six Cultivars ofPoncirus trifoliata(Rutaceae). Florida Entomologist, 100(3), 667-668. doi:10.1653/024.100.0328 es_ES
dc.description.references Hall, D. G., Ramadugu, C., Hentz, M. G., Gmitter, F. G., & Stover, E. (2019). Survey of Poncirus trifoliata Hybrids for Resistance to Colonization by Asian Citrus Psyllid. Florida Entomologist, 102(3), 635. doi:10.1653/024.102.0339 es_ES
dc.description.references Hall, D. G., Wenninger, E. J., & Hentz, M. G. (2011). Temperature Studies with the Asian Citrus Psyllid,Diaphorina citri: Cold Hardiness and Temperature Thresholds for Oviposition. Journal of Insect Science, 11(83), 1-15. doi:10.1673/031.011.8301 es_ES
dc.description.references Hilf, M. E., & Luo, W. (2018). Dynamics of ‘Candidatus Liberibacter asiaticus’ Colonization of New Growth of Citrus. Phytopathology®, 108(10), 1165-1171. doi:10.1094/phyto-12-17-0408-r es_ES
dc.description.references Hung, T.-H., Wu, M.-L., & Su, H.-J. (2001). European Journal of Plant Pathology, 107(2), 183-189. doi:10.1023/a:1011283906502 es_ES
dc.description.references Johnson, E. G., Wu, J., Bright, D. B., & Graham, J. H. (2013). Association of ‘CandidatusLiberibacter asiaticus’ root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathology, 63(2), 290-298. doi:10.1111/ppa.12109 es_ES
dc.description.references Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581 es_ES
dc.description.references Li, W., Levy, L., & Hartung, J. S. (2009). Quantitative Distribution of ‘Candidatus Liberibacter asiaticus’ in Citrus Plants with Citrus Huanglongbing. Phytopathology®, 99(2), 139-144. doi:10.1094/phyto-99-2-0139 es_ES
dc.description.references Li, W., Hartung, J. S., & Levy, L. (2006). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods, 66(1), 104-115. doi:10.1016/j.mimet.2005.10.018 es_ES
dc.description.references Lopes, S. A., Frare, G. F., Bertolini, E., Cambra, M., Fernandes, N. G., Ayres, A. J., … Bové, J. M. (2009). Liberibacters Associated with Citrus Huanglongbing in Brazil: ‘Candidatus Liberibacter asiaticus’ Is Heat Tolerant, ‘Ca. L. americanus’ Is Heat Sensitive. Plant Disease, 93(3), 257-262. doi:10.1094/pdis-93-3-0257 es_ES
dc.description.references Lopes, S. A., Luiz, F. Q. B. F., Martins, E. C., Fassini, C. G., Sousa, M. C., Barbosa, J. C., & Beattie, G. A. C. (2013). ‘Candidatus Liberibacter asiaticus’ Titers in Citrus and Acquisition Rates by Diaphorina citri Are Decreased by Higher Temperature. Plant Disease, 97(12), 1563-1570. doi:10.1094/pdis-11-12-1031-re es_ES
dc.description.references Luro, F. L., Costantino, G., Terol, J., Argout, X., Allario, T., Wincker, P., … Morillon, R. (2008). Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics, 9(1), 287. doi:10.1186/1471-2164-9-287 es_ES
dc.description.references Mabberley, D. J. (2004). Citrus (Rutaceae): A Review of Recent Advances in Etymology, Systematics and Medical Applications. Blumea - Biodiversity, Evolution and Biogeography of Plants, 49(2), 481-498. doi:10.3767/000651904x484432 es_ES
dc.description.references Miles, G. P., Stover, E., Ramadugu, C., Keremane, M. L., & Lee, R. F. (2017). Apparent Tolerance to Huanglongbing in Citrus and Citrus-related Germplasm. HortScience, 52(1), 31-39. doi:10.21273/hortsci11374-16 es_ES
dc.description.references Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321 es_ES
dc.description.references Nagano, Y., Mimura, T., Kotoda, N., Matsumoto, R., Nagano, A. J., Honjo, M. N., … Yamamoto, M. (2018). Phylogenetic relationships of Aurantioideae (Rutaceae) based on RAD-Seq. Tree Genetics & Genomes, 14(1). doi:10.1007/s11295-017-1223-z es_ES
dc.description.references Ollitrault, P., Curk, F., & Krueger, R. (2020). Citrus taxonomy. The Genus Citrus, 57-81. doi:10.1016/b978-0-12-812163-4.00004-8 es_ES
dc.description.references Parra, J. R. P., Alves, G. R., Diniz, A. J. F., & Vieira, J. M. (2016). Tamarixia radiata(Hymenoptera: Eulophidae) ×Diaphorina citri(Hemiptera: Liviidae): Mass Rearing and Potential Use of the Parasitoid in Brazil. Journal of Integrated Pest Management, 7(1), 5. doi:10.1093/jipm/pmw003 es_ES
dc.description.references Patt, J. M., & Sétamou, M. (2010). Responses of the Asian Citrus Psyllid to Volatiles Emitted by the Flushing Shoots of Its Rutaceous Host Plants. Environmental Entomology, 39(2), 618-624. doi:10.1603/en09216 es_ES
dc.description.references Pfeil, B. E., & Crisp, M. D. (2008). The age and biogeography of Citrus and the orange subfamily (Rutaceae: Aurantioideae) in Australasia and New Caledonia. American Journal of Botany, 95(12), 1621-1631. doi:10.3732/ajb.0800214 es_ES
dc.description.references Raiol-Junior, L. L., Cifuentes-Arenas, J. C., de Carvalho, E. V., Girardi, E. A., & Lopes, S. A. (2021). Evidence That ‘Candidatus Liberibacter asiaticus’ Moves Predominantly Toward New Tissue Growth in Citrus Plants. Plant Disease, 105(1), 34-42. doi:10.1094/pdis-01-20-0158-re es_ES
dc.description.references Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y. P., Roose, M. L., Stover, E., & Lee, R. F. (2016). Long-Term Field Evaluation Reveals Huanglongbing Resistance in Citrus Relatives. Plant Disease, 100(9), 1858-1869. doi:10.1094/pdis-03-16-0271-re es_ES
dc.description.references Richardson, M. L., & Hall, D. G. (2013). Resistance of Poncirus and Citrus × Poncirus Germplasm to the Asian Citrus Psyllid. Crop Science, 53(1), 183-188. doi:10.2135/cropsci2012.02.0091 es_ES
dc.description.references SHAPIRO, S. S., & WILK, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611. doi:10.1093/biomet/52.3-4.591 es_ES
dc.description.references Shokrollah. (2009). Differential Reaction of Citrus Species in Malaysia to Huanglongbing (HLB) Disease using Grafting Method. American Journal of Agricultural and Biological Sciences, 4(1), 32-38. doi:10.3844/ajabssp.2009.32.38 es_ES
dc.description.references Toni J. Siebert, Tracy L. Kahn, & Robert R. Krueger. (2015). OBSERVATIONS OF GRAFT COMPATIBILITY BETWEEN CITRUS SPP. AND RELATED AURANTIOIDEAE TAXA. Acta Horticulturae, (1065), 173-179. doi:10.17660/actahortic.2015.1065.17 es_ES
dc.description.references Tatineni, S., Sagaram, U. S., Gowda, S., Robertson, C. J., Dawson, W. O., Iwanami, T., & Wang, N. (2008). In Planta Distribution of ‘Candidatus Liberibacter asiaticus’ as Revealed by Polymerase Chain Reaction (PCR) and Real-Time PCR. Phytopathology®, 98(5), 592-599. doi:10.1094/phyto-98-5-0592 es_ES
dc.description.references Do Carmo Teixeira, D., Luc Danet, J., Eveillard, S., Cristina Martins, E., Cintra de Jesus Junior, W., Takao Yamamoto, P., … Bové, J. M. (2005). Citrus huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Molecular and Cellular Probes, 19(3), 173-179. doi:10.1016/j.mcp.2004.11.002 es_ES
dc.description.references Wenninger, E. J., Stelinski, L. L., & Hall, D. G. (2009). Roles of Olfactory Cues, Visual Cues, and Mating Status in Orientation of <I>Diaphorina citri</I> Kuwayama (Hemiptera: Psyllidae) to Four Different Host Plants. Environmental Entomology, 38(1), 225-234. doi:10.1603/022.038.0128 es_ES
dc.description.references Westbrook, C. J., Hall, D. G., Stover, E., Duan, Y. P., & Lee, R. F. (2011). Colonization of Citrus and Citrus-related Germplasm by Diaphorina citri (Hemiptera: Psyllidae). HortScience, 46(7), 997-1005. doi:10.21273/hortsci.46.7.997 es_ES
dc.description.references Wu, G. A., Terol, J., Ibanez, V., López-García, A., Pérez-Román, E., Borredá, C., … Talon, M. (2018). Genomics of the origin and evolution of Citrus. Nature, 554(7692), 311-316. doi:10.1038/nature25447 es_ES
dc.description.references Yoshida, T. (1996). Graft Compatibility ofCitruswith Plants in thesAurantioideaeand Their Susceptibility to Citrus Tristeza Virus. Plant Disease, 80(4), 414. doi:10.1094/pd-80-0414 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem