- -

Extended metabolic biosensor design for dynamic pathway regulation of cell factories

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extended metabolic biosensor design for dynamic pathway regulation of cell factories

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boada-Acosta, Yadira Fernanda es_ES
dc.contributor.author Vignoni, Alejandro es_ES
dc.contributor.author Picó, Jesús es_ES
dc.contributor.author Carbonell, Pablo es_ES
dc.date.accessioned 2021-07-22T03:33:46Z
dc.date.available 2021-07-22T03:33:46Z
dc.date.issued 2020-07-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169743
dc.description.abstract [EN] Transcription factor-based biosensors naturally occur in metabolic pathways to maintain cell growth and to provide a robust response to environmental fluctua-tions. Extended metabolic biosensors, i.e., the cascading of a bio-conversion pathway and a transcription factor (TF) responsive to the downstream effector metabolite, provide sensing capabilities beyond natural effectors for implement-ing context-aware synthetic genetic circuits and bio-observers. However, the engineering of such multi-step circuits is challenged by stability and robustness issues. In order to streamline the design of TF-based biosensors in metabolic pathways, here we investigate the response of a genetic circuit combining a TF-based extended metabolic biosensor with an antithetic integral circuit, a feed-back controller that achieves robustness against environmental fluctuations. The dynamic response of an extended biosensor-based regulated flavonoid pathway is analyzed in order to address the issues of biosensor tuning of the regulated pathway under industrial biomanufacturing operating constraints. es_ES
dc.description.sponsorship This work is partially supported by grant MINECO/AEI and EU DPI2017-82896-C2-1-R. P.C. acknowledges support from the Universitat Politecnica de Valencia Talento Programme. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier (Cell Press) es_ES
dc.relation.ispartof iScience es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Extended metabolic biosensor design for dynamic pathway regulation of cell factories es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.isci.2020.101305 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-82896-C2-1-R/ES/DISEÑO, CARACTERIZACION Y AJUSTE OPTIMO DE BIOCIRCUITOS SINTETICOS PARA BIOPRODUCCION CON CONTROL DE CARGA METABOLICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Boada-Acosta, YF.; Vignoni, A.; Picó, J.; Carbonell, P. (2020). Extended metabolic biosensor design for dynamic pathway regulation of cell factories. iScience. 23(7):1-25. https://doi.org/10.1016/j.isci.2020.101305 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.isci.2020.101305 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2589-0042 es_ES
dc.identifier.pmid 32629420 es_ES
dc.identifier.pmcid PMC7334618 es_ES
dc.relation.pasarela S\414464 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Agrawal, D. K., Dolan, E. M., Hernandez, N. E., Blacklock, K. M., Khare, S. D., & Sontag, E. D. (2020). Mathematical Models of Protease-Based Enzymatic Biosensors. ACS Synthetic Biology, 9(2), 198-208. doi:10.1021/acssynbio.9b00279 es_ES
dc.description.references Arnold, F. H. (2017). Directed Evolution: Bringing New Chemistry to Life. Angewandte Chemie International Edition, 57(16), 4143-4148. doi:10.1002/anie.201708408 es_ES
dc.description.references Boada, Y., Vignoni, A., & Picó, J. (2017). Engineered Control of Genetic Variability Reveals Interplay among Quorum Sensing, Feedback Regulation, and Biochemical Noise. ACS Synthetic Biology, 6(10), 1903-1912. doi:10.1021/acssynbio.7b00087 es_ES
dc.description.references Boada, Y., Vignoni, A., & Picó, J. (2017). Multi-objective optimization for gene expression noise reduction in a synthetic gene circuit * *This work is partially supported by Spanish government and European Union (FEDER-CICYT DPI2014-55276-C5-1). Y.B. thanks grant FPI/2013-3242 of Universitat Politècnica de València, and also thanks the support from the Ayudas para movilidad dentro del Programa para la Formación de Personal Investigador (FPI) de la UPV para estancias 2016. A.V. thanks the Max Planck Society, the CSBD and the MPI-CBG. The authors are grateful to Prof. Dr. Ivo F. Sbalzarini for hosting Y.B in the MOSAIC Group for a research stay, also to Pietro Incadorna from the MOSAIC Group at CSBD for his help in the parallel algorithm implementation, and to Dr. Gilberto Reynoso-Meza from the PPGEPS at Pontifícia Universidade Católica do Paraná for his always helpful comments regarding the MOOD. IFAC-PapersOnLine, 50(1), 4472-4477. doi:10.1016/j.ifacol.2017.08.376 es_ES
dc.description.references Boada, Y., Vignoni, A., & Pico, J. (2020). Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology, 28(1), 208-223. doi:10.1109/tcst.2018.2885694 es_ES
dc.description.references Briat, C., Gupta, A., & Khammash, M. (2016). Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks. Cell Systems, 2(1), 15-26. doi:10.1016/j.cels.2016.01.004 es_ES
dc.description.references Briat, C., & Khammash, M. (2018). Perfect Adaptation and Optimal Equilibrium Productivity in a Simple Microbial Biofuel Metabolic Pathway Using Dynamic Integral Control. ACS Synthetic Biology, 7(2), 419-431. doi:10.1021/acssynbio.7b00188 es_ES
dc.description.references Carbonell, P., Jervis, A. J., Robinson, C. J., Yan, C., Dunstan, M., Swainston, N., … Scrutton, N. S. (2018). An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 1(1). doi:10.1038/s42003-018-0076-9 es_ES
dc.description.references Carbonell, P., Parutto, P., Baudier, C., Junot, C., & Faulon, J.-L. (2013). Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synthetic Biology, 3(8), 565-577. doi:10.1021/sb4001273 es_ES
dc.description.references Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O., Ladak, Y. N., … Ellis, T. (2018). Burden-driven feedback control of gene expression. Nature Methods, 15(5), 387-393. doi:10.1038/nmeth.4635 es_ES
dc.description.references Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y.-S., & Lee, S. Y. (2017). Recent advances in systems metabolic engineering tools and strategies. Current Opinion in Biotechnology, 47, 67-82. doi:10.1016/j.copbio.2017.06.007 es_ES
dc.description.references Chen, X., & Liu, L. (2018). Gene Circuits for Dynamically Regulating Metabolism. Trends in Biotechnology, 36(8), 751-754. doi:10.1016/j.tibtech.2017.12.007 es_ES
dc.description.references Cheng, F., Tang, X.-L., & Kardashliev, T. (2018). Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications. Biotechnology Journal, 13(7), 1700648. doi:10.1002/biot.201700648 es_ES
dc.description.references Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 61(3), 876-885. doi:10.1016/j.ces.2005.03.031 es_ES
dc.description.references Delépine, B., Libis, V., Carbonell, P., & Faulon, J.-L. (2016). SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research, 44(W1), W226-W231. doi:10.1093/nar/gkw305 es_ES
dc.description.references Dinh, C. V., Chen, X., & Prather, K. L. J. (2020). Development of a Quorum-Sensing Based Circuit for Control of Coculture Population Composition in a Naringenin Production System. ACS Synthetic Biology, 9(3), 590-597. doi:10.1021/acssynbio.9b00451 es_ES
dc.description.references Doong, S. J., Gupta, A., & Prather, K. L. J. (2018). Layered dynamic regulation for improving metabolic pathway productivity inEscherichia coli. Proceedings of the National Academy of Sciences, 115(12), 2964-2969. doi:10.1073/pnas.1716920115 es_ES
dc.description.references Evans, C. R., Kempes, C. P., Price-Whelan, A., & Dietrich, L. E. P. (2020). Metabolic Heterogeneity and Cross-Feeding in Bacterial Multicellular Systems. Trends in Microbiology, 28(9), 732-743. doi:10.1016/j.tim.2020.03.008 es_ES
dc.description.references Gao, C., Xu, P., Ye, C., Chen, X., & Liu, L. (2019). Genetic Circuit-Assisted Smart Microbial Engineering. Trends in Microbiology, 27(12), 1011-1024. doi:10.1016/j.tim.2019.07.005 es_ES
dc.description.references Goldberg, A. P., Szigeti, B., Chew, Y. H., Sekar, J. A., Roth, Y. D., & Karr, J. R. (2018). Emerging whole-cell modeling principles and methods. Current Opinion in Biotechnology, 51, 97-102. doi:10.1016/j.copbio.2017.12.013 es_ES
dc.description.references Hsiao, V., Swaminathan, A., & Murray, R. M. (2018). Control Theory for Synthetic Biology: Recent Advances in System Characterization, Control Design, and Controller Implementation for Synthetic Biology. IEEE Control Systems, 38(3), 32-62. doi:10.1109/mcs.2018.2810459 es_ES
dc.description.references Huyett, L. M., Dassau, E., Zisser, H. C., & Doyle, F. J. (2018). Glucose Sensor Dynamics and the Artificial Pancreas: The Impact of Lag on Sensor Measurement and Controller Performance. IEEE Control Systems, 38(1), 30-46. doi:10.1109/mcs.2017.2766322 es_ES
dc.description.references Johnson, A. O., Gonzalez-Villanueva, M., Wong, L., Steinbüchel, A., Tee, K. L., Xu, P., & Wong, T. S. (2017). Design and application of genetically-encoded malonyl-CoA biosensors for metabolic engineering of microbial cell factories. Metabolic Engineering, 44, 253-264. doi:10.1016/j.ymben.2017.10.011 es_ES
dc.description.references Juminaga, D., Baidoo, E. E. K., Redding-Johanson, A. M., Batth, T. S., Burd, H., Mukhopadhyay, A., … Keasling, J. D. (2011). Modular Engineering of l-Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology, 78(1), 89-98. doi:10.1128/aem.06017-11 es_ES
dc.description.references Koch, M., Pandi, A., Delépine, B., & Faulon, J.-L. (2018). A dataset of small molecules triggering transcriptional and translational cellular responses. Data in Brief, 17, 1374-1378. doi:10.1016/j.dib.2018.02.061 es_ES
dc.description.references LEONARD, E., YAN, Y., & KOFFAS, M. (2006). Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 8(2), 172-181. doi:10.1016/j.ymben.2005.11.001 es_ES
dc.description.references Lin, J.-L., Wagner, J. M., & Alper, H. S. (2017). Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnology Advances, 35(8), 950-970. doi:10.1016/j.biotechadv.2017.07.005 es_ES
dc.description.references Liu, D., Mannan, A. A., Han, Y., Oyarzún, D. A., & Zhang, F. (2018). Dynamic metabolic control: towards precision engineering of metabolism. Journal of Industrial Microbiology and Biotechnology, 45(7), 535-543. doi:10.1007/s10295-018-2013-9 es_ES
dc.description.references Liu, D., Xiao, Y., Evans, B. S., & Zhang, F. (2014). Negative Feedback Regulation of Fatty Acid Production Based on a Malonyl-CoA Sensor–Actuator. ACS Synthetic Biology, 4(2), 132-140. doi:10.1021/sb400158w es_ES
dc.description.references Liu, D., & Zhang, F. (2018). Metabolic Feedback Circuits Provide Rapid Control of Metabolite Dynamics. ACS Synthetic Biology, 7(2), 347-356. doi:10.1021/acssynbio.7b00342 es_ES
dc.description.references Liu, L., Shan, S., Zhang, K., Ning, Z.-Q., Lu, X.-P., & Cheng, Y.-Y. (2008). Naringenin and hesperetin, two flavonoids derived fromCitrus aurantiumup-regulate transcription of adiponectin. Phytotherapy Research, 22(10), 1400-1403. doi:10.1002/ptr.2504 es_ES
dc.description.references Mahr, R., & Frunzke, J. (2015). Transcription factor-based biosensors in biotechnology: current state and future prospects. Applied Microbiology and Biotechnology, 100(1), 79-90. doi:10.1007/s00253-015-7090-3 es_ES
dc.description.references Mannan, A. A., Liu, D., Zhang, F., & Oyarzún, D. A. (2017). Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors. ACS Synthetic Biology, 6(10), 1851-1859. doi:10.1021/acssynbio.7b00172 es_ES
dc.description.references McKeague, M., Wong, R. S., & Smolke, C. D. (2016). Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Research, 44(7), 2987-2999. doi:10.1093/nar/gkw151 es_ES
dc.description.references Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., … Voigt, C. A. (2016). Genetic circuit design automation. Science, 352(6281), aac7341-aac7341. doi:10.1126/science.aac7341 es_ES
dc.description.references Nikolados, E.-M., Weiße, A. Y., Ceroni, F., & Oyarzún, D. A. (2019). Growth Defects and Loss-of-Function in Synthetic Gene Circuits. ACS Synthetic Biology, 8(6), 1231-1240. doi:10.1021/acssynbio.8b00531 es_ES
dc.description.references De Paepe, B., Maertens, J., Vanholme, B., & De Mey, M. (2018). Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor. ACS Synthetic Biology, 7(5), 1303-1314. doi:10.1021/acssynbio.7b00419 es_ES
dc.description.references Rahigude, A., Bhutada, P., Kaulaskar, S., Aswar, M., & Otari, K. (2012). Participation of antioxidant and cholinergic system in protective effect of naringenin against type-2 diabetes-induced memory dysfunction in rats. Neuroscience, 226, 62-72. doi:10.1016/j.neuroscience.2012.09.026 es_ES
dc.description.references Rhodius, V. A., Segall‐Shapiro, T. H., Sharon, B. D., Ghodasara, A., Orlova, E., Tabakh, H., … Voigt, C. A. (2013). Design of orthogonal genetic switches based on a crosstalk map of σs, anti‐σs, and promoters. Molecular Systems Biology, 9(1), 702. doi:10.1038/msb.2013.58 es_ES
dc.description.references Rodriguez, A., Strucko, T., Stahlhut, S. G., Kristensen, M., Svenssen, D. K., Forster, J., … Borodina, I. (2017). Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology, 245, 1645-1654. doi:10.1016/j.biortech.2017.06.043 es_ES
dc.description.references Segall-Shapiro, T. H., Sontag, E. D., & Voigt, C. A. (2018). Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36(4), 352-358. doi:10.1038/nbt.4111 es_ES
dc.description.references Shi, S., Ang, E. L., & Zhao, H. (2018). In vivo biosensors: mechanisms, development, and applications. Journal of Industrial Microbiology and Biotechnology, 45(7), 491-516. doi:10.1007/s10295-018-2004-x es_ES
dc.description.references Shopera, T., He, L., Oyetunde, T., Tang, Y. J., & Moon, T. S. (2017). Decoupling Resource-Coupled Gene Expression in Living Cells. ACS Synthetic Biology, 6(8), 1596-1604. doi:10.1021/acssynbio.7b00119 es_ES
dc.description.references Siedler, S., Stahlhut, S. G., Malla, S., Maury, J., & Neves, A. R. (2014). Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 21, 2-8. doi:10.1016/j.ymben.2013.10.011 es_ES
dc.description.references Snoek, T., Chaberski, E. K., Ambri, F., Kol, S., Bjørn, S. P., Pang, B., … Keasling, J. D. (2019). Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Research, 48(1), e3-e3. doi:10.1093/nar/gkz954 es_ES
dc.description.references Stevens, J. T., & Carothers, J. M. (2014). Designing RNA-Based Genetic Control Systems for Efficient Production from Engineered Metabolic Pathways. ACS Synthetic Biology, 4(2), 107-115. doi:10.1021/sb400201u es_ES
dc.description.references Trantas, E., Panopoulos, N., & Ververidis, F. (2009). Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering, 11(6), 355-366. doi:10.1016/j.ymben.2009.07.004 es_ES
dc.description.references Wang, R., Cress, B. F., Yang, Z., Hordines, J. C., Zhao, S., Jung, G. Y., … Koffas, M. A. G. (2019). Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in Saccharomyces cerevisiae. ACS Synthetic Biology, 8(9), 2121-2130. doi:10.1021/acssynbio.9b00212 es_ES
dc.description.references Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T. R., & Mukhopadhyay, A. (2019). Engineering Robust Production Microbes for Large-Scale Cultivation. Trends in Microbiology, 27(6), 524-537. doi:10.1016/j.tim.2019.01.006 es_ES
dc.description.references Xu, P., Li, L., Zhang, F., Stephanopoulos, G., & Koffas, M. (2014). Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proceedings of the National Academy of Sciences, 111(31), 11299-11304. doi:10.1073/pnas.1406401111 es_ES
dc.description.references Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D., & Koffas, M. A. G. (2011). Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metabolic Engineering, 13(5), 578-587. doi:10.1016/j.ymben.2011.06.008 es_ES
dc.description.references Yang, Y., Lin, Y., Li, L., Linhardt, R. J., & Yan, Y. (2015). Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metabolic Engineering, 29, 217-226. doi:10.1016/j.ymben.2015.03.018 es_ES
dc.description.references Zhou, S., Lyu, Y., Li, H., Koffas, M. A. G., & Zhou, J. (2019). Fine‐tuning the (2 S )‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnology and Bioengineering, 116(6), 1392-1404. doi:10.1002/bit.26941 es_ES
dc.description.references Zygmunt, K., Faubert, B., MacNeil, J., & Tsiani, E. (2010). Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochemical and Biophysical Research Communications, 398(2), 178-183. doi:10.1016/j.bbrc.2010.06.048 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem