- -

RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author LEON RAMOS, JOSE es_ES
dc.contributor.author Costa-Broseta, Álvaro es_ES
dc.contributor.author Castillo López Del Toro, Mª Cruz es_ES
dc.date.accessioned 2021-07-23T03:31:09Z
dc.date.available 2021-07-23T03:31:09Z
dc.date.issued 2020-05-30 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169898
dc.description.abstract [EN] Nitric oxide (NO) is sensed through a mechanism involving the degradation of group-VII ERF transcription factors (ERFVIIs) that is mediated by the N-degron pathway. However, the mechanisms regulating NO homeostasis and downstream responses remain mostly unknown. To explore the role of ERFVIIs in regulating NO production and signaling, genome-wide transcriptome analyses were performed on single and multiple erfvii mutants of Arabidopsis following exposure to NO. Transgenic plants overexpressing degradable or non-degradable versions of RAP2.3, one of the five ERFVIIs, were also examined. Enhanced RAP2.3 expression attenuated the changes in the transcriptome upon exposure to NO, and thereby acted as a brake for NO-triggered responses that included the activation of jasmonate and ABA signaling. The expression of non-degradable RAP2.3 attenuated NO biosynthesis in shoots but not in roots, and released the NO-triggered inhibition of hypocotyl and root elongation. In the guard cells of stomata, the control of NO accumulation depended on PRT6-triggered degradation of RAP2.3 more than on RAP2.3 levels. RAP2.3 therefore seemed to work as a molecular rheostat controlling NO homeostasis and signaling. Its function as a brake for NO signaling was released upon NO-triggered PRT6-mediated degradation, thus allowing the inhibition of growth, and the potentiation of jasmonate- and ABA-related signaling. es_ES
dc.description.sponsorship We would like to acknowledge Lorena Latorre (Genomic Service at IBMCP) for her support in the hybridizing Agilent microarrays. This work was supported by grants BIO2014-56067-P and BIO2017-82945-P from the Spanish Ministry of Economy, Industry and Competitiveness, and by FEDER funds. The authors declare no conflicts of interest. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ABA signaling es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject Jasmonate signaling es_ES
dc.subject Nitric oxide es_ES
dc.subject Oxidative stress es_ES
dc.subject RAP2.3 transcription factor es_ES
dc.title RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/eraa069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82945-P/ES/TOLERANCIA AL OXIGENO Y AL OXIDO NITRICO TRAS HIPOXIA EN ARABIDOPSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-56067-P/ES/CONTROL DE LA PRODUCCION, PERCEPCION Y SEÑALIZACION DE NO POR MODIFICACIONES POSTRADUCCIONALES Y PROTEOLISIS DIRIGIDA POR LA SECUENCIA AMINOTERMINAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Leon Ramos, J.; Costa-Broseta, Á.; Castillo López Del Toro, MC. (2020). RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis. Journal of Experimental Botany. 71(10):3157-3171. https://doi.org/10.1093/jxb/eraa069 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/eraa069 es_ES
dc.description.upvformatpinicio 3157 es_ES
dc.description.upvformatpfin 3171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 32052059 es_ES
dc.identifier.pmcid PMC7260729 es_ES
dc.relation.pasarela S\433243 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación
dc.description.references Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060 es_ES
dc.description.references Arasimowicz‐Jelonek, M., & Floryszak‐Wieczorek, J. (2013). Nitric oxide: an effective weapon of the plant or the pathogen? Molecular Plant Pathology, 15(4), 406-416. doi:10.1111/mpp.12095 es_ES
dc.description.references Astier, J., Gross, I., & Durner, J. (2017). Nitric oxide production in plants: an update. Journal of Experimental Botany, 69(14), 3401-3411. doi:10.1093/jxb/erx420 es_ES
dc.description.references Astier, J., & Lindermayr, C. (2012). Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update. International Journal of Molecular Sciences, 13(12), 15193-15208. doi:10.3390/ijms131115193 es_ES
dc.description.references Baxter-Burrell, A., Yang, Z., Springer, P. S., & Bailey-Serres, J. (2002). RopGAP4-Dependent Rop GTPase Rheostat Control of Arabidopsis Oxygen Deprivation Tolerance. Science, 296(5575), 2026-2028. doi:10.1126/science.1071505 es_ES
dc.description.references Beligni, M. V., & Lamattina, L. (1999). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta, 208(3), 337-344. doi:10.1007/s004250050567 es_ES
dc.description.references Beligni, M. V., & Lamattina, L. (2000). Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta, 210(2), 215-221. doi:10.1007/pl00008128 es_ES
dc.description.references Bu, Q., Jiang, H., Li, C.-B., Zhai, Q., Zhang, J., Wu, X., … Li, C. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 18(7), 756-767. doi:10.1038/cr.2008.53 es_ES
dc.description.references Bui, L. T., Giuntoli, B., Kosmacz, M., Parlanti, S., & Licausi, F. (2015). Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Science, 236, 37-43. doi:10.1016/j.plantsci.2015.03.008 es_ES
dc.description.references Buttner, M., & Singh, K. B. (1997). Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proceedings of the National Academy of Sciences, 94(11), 5961-5966. doi:10.1073/pnas.94.11.5961 es_ES
dc.description.references Castillo, M.-C., Coego, A., Costa-Broseta, Á., & León, J. (2018). Nitric oxide responses in Arabidopsis hypocotyls are mediated by diverse phytohormone pathways. Journal of Experimental Botany, 69(21), 5265-5278. doi:10.1093/jxb/ery286 es_ES
dc.description.references Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392). doi:10.1126/scisignal.aaa7981 es_ES
dc.description.references Chen, H.-J., Fu, T.-Y., Yang, S.-L., & Hsieh, H.-L. (2018). FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis. PLOS Genetics, 14(3), e1007248. doi:10.1371/journal.pgen.1007248 es_ES
dc.description.references Cheng, C., Wang, Z., Ren, Z., Zhi, L., Yao, B., Su, C., … Li, X. (2017). SCFAtPP2-B11 modulates ABA signaling by facilitating SnRK2.3 degradation in Arabidopsis thaliana. PLOS Genetics, 13(8), e1006947. doi:10.1371/journal.pgen.1006947 es_ES
dc.description.references Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., … del Pozo, J. C. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal, 77(6), 944-953. doi:10.1111/tpj.12443 es_ES
dc.description.references Dissmeyer, N., Rivas, S., & Graciet, E. (2017). Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. New Phytologist, 218(3), 929-935. doi:10.1111/nph.14619 es_ES
dc.description.references Dong, C.-J., & Liu, J.-Y. (2010). The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biology, 10(1), 47. doi:10.1186/1471-2229-10-47 es_ES
dc.description.references Du, J., Li, M., Kong, D., Wang, L., Lv, Q., Wang, J., … He, Y. (2013). Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MAD1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. Journal of Experimental Botany, 65(14), 4051-4063. doi:10.1093/jxb/ert429 es_ES
dc.description.references Fancy, N. N., Bahlmann, A., & Loake, G. J. (2016). Nitric oxide function in plant abiotic stress. Plant, Cell & Environment, 40(4), 462-472. doi:10.1111/pce.12707 es_ES
dc.description.references Feng, C., Chen, Y., Wang, C., Kong, Y., Wu, W., & Chen, Y. (2014). Arabidopsis RAV 1 transcription factor, phosphorylated by S n RK 2 kinases, regulates the expression of ABI 3 , ABI 4 , and ABI 5 during seed germination and early seedling development. The Plant Journal, 80(4), 654-668. doi:10.1111/tpj.12670 es_ES
dc.description.references Foudree, A., Aluru, M., & Rodermel, S. (2010). PDS activity acts as a rheostat of retrograde signaling during early chloroplast biogenesis. Plant Signaling & Behavior, 5(12), 1629-1632. doi:10.4161/psb.5.12.13773 es_ES
dc.description.references Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. doi:10.1073/pnas.1316278111 es_ES
dc.description.references Gasch, P., Fundinger, M., Müller, J. T., Lee, T., Bailey-Serres, J., & Mustroph, A. (2015). Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis. The Plant Cell, 28(1), 160-180. doi:10.1105/tpc.15.00866 es_ES
dc.description.references Gibbs, D. J., Bacardit, J., Bachmair, A., & Holdsworth, M. J. (2014). The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends in Cell Biology, 24(10), 603-611. doi:10.1016/j.tcb.2014.05.001 es_ES
dc.description.references Gibbs, D. J., Conde, J. V., Berckhan, S., Prasad, G., Mendiondo, G. M., & Holdsworth, M. J. (2015). Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. Plant Physiology, 169(1), 23-31. doi:10.1104/pp.15.00338 es_ES
dc.description.references Gibbs, D. J., Lee, S. C., Md Isa, N., Gramuglia, S., Fukao, T., Bassel, G. W., … Holdsworth, M. J. (2011). Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 479(7373), 415-418. doi:10.1038/nature10534 es_ES
dc.description.references Gibbs, D. J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G. M., Berckhan, S., … Holdsworth, M. J. (2014). Nitric Oxide Sensing in Plants Is Mediated by Proteolytic Control of Group VII ERF Transcription Factors. Molecular Cell, 53(3), 369-379. doi:10.1016/j.molcel.2013.12.020 es_ES
dc.description.references Guo, F.-Q., Okamoto, M., & Crawford, N. M. (2003). Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science, 302(5642), 100-103. doi:10.1126/science.1086770 es_ES
dc.description.references Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007 es_ES
dc.description.references Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., … Voesenek, L. A. C. J. (2019). Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nature Communications, 10(1). doi:10.1038/s41467-019-12045-4 es_ES
dc.description.references He, Y., Tang, R.-H., Hao, Y., Stevens, R. D., Cook, C. W., Ahn, S. M., … Pei, Z.-M. (2004). Nitric Oxide Represses the Arabidopsis Floral Transition. Science, 305(5692), 1968-1971. doi:10.1126/science.1098837 es_ES
dc.description.references Imran, Q. M., Hussain, A., Lee, S.-U., Mun, B.-G., Falak, N., Loake, G. J., & Yun, B.-W. (2018). Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Scientific Reports, 8(1). doi:10.1038/s41598-017-18850-5 es_ES
dc.description.references Kagale, S., & Rozwadowski, K. (2010). Small yet effective. Plant Signaling & Behavior, 5(6), 691-694. doi:10.4161/psb.5.6.11576 es_ES
dc.description.references Kagale, S., & Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants. Epigenetics, 6(2), 141-146. doi:10.4161/epi.6.2.13627 es_ES
dc.description.references Kumari, A., Pathak, P. K., Bulle, M., Igamberdiev, A. U., & Gupta, K. J. (2019). Alternative oxidase is an important player in the regulation of nitric oxide levels under normoxic and hypoxic conditions in plants. Journal of Experimental Botany, 70(17), 4345-4354. doi:10.1093/jxb/erz160 es_ES
dc.description.references León, J., Castillo, M. C., Coego, A., Lozano-Juste, J., & Mir, R. (2013). Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. Journal of Experimental Botany, 65(4), 907-921. doi:10.1093/jxb/ert454 es_ES
dc.description.references León, J., Costa, Á., & Castillo, M.-C. (2016). Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Scientific Reports, 6(1). doi:10.1038/srep37945 es_ES
dc.description.references Li, H.-Y., Xiao, S., & Chye, M.-L. (2008). Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein. Journal of Experimental Botany, 59(14), 3997-4006. doi:10.1093/jxb/ern241 es_ES
dc.description.references Licausi, F., Kosmacz, M., Weits, D. A., Giuntoli, B., Giorgi, F. M., Voesenek, L. A. C. J., … van Dongen, J. T. (2011). Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 479(7373), 419-422. doi:10.1038/nature10536 es_ES
dc.description.references Liu, F., & Guo, F.-Q. (2013). Nitric Oxide Deficiency Accelerates Chlorophyll Breakdown and Stability Loss of Thylakoid Membranes during Dark-Induced Leaf Senescence in Arabidopsis. PLoS ONE, 8(2), e56345. doi:10.1371/journal.pone.0056345 es_ES
dc.description.references Lozano-Juste, J., & Leoݩn, J. (2009). Enhanced Abscisic Acid-Mediated Responses innia1nia2noa1-2Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis. Plant Physiology, 152(2), 891-903. doi:10.1104/pp.109.148023 es_ES
dc.description.references Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis  . Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741 es_ES
dc.description.references Manjunatha, G., Lokesh, V., & Neelwarne, B. (2010). Nitric oxide in fruit ripening: Trends and opportunities. Biotechnology Advances, 28(4), 489-499. doi:10.1016/j.biotechadv.2010.03.001 es_ES
dc.description.references La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723 es_ES
dc.description.references Mur, L. A. J., Carver, T. L. W., & Prats, E. (2005). NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 57(3), 489-505. doi:10.1093/jxb/erj052 es_ES
dc.description.references Nakano, T., Suzuki, K., Fujimura, T., & Shinshi, H. (2006). Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiology, 140(2), 411-432. doi:10.1104/pp.105.073783 es_ES
dc.description.references Ogawa, T., Pan, L., Kawai-Yamada, M., Yu, L.-H., Yamamura, S., Koyama, T., … Uchimiya, H. (2005). Functional Analysis of Arabidopsis Ethylene-Responsive Element Binding Protein Conferring Resistance to Bax and Abiotic Stress-Induced Plant Cell Death. Plant Physiology, 138(3), 1436-1445. doi:10.1104/pp.105.063586 es_ES
dc.description.references Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., & Ohme-Takagi, M. (2001). Repression Domains of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression. The Plant Cell, 13(8), 1959-1968. doi:10.1105/tpc.010127 es_ES
dc.description.references Papdi, C., Pérez-Salamó, I., Joseph, M. P., Giuntoli, B., Bögre, L., Koncz, C., & Szabados, L. (2015). The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor VII genesRAP2.12,RAP2.2andRAP2.3. The Plant Journal, 82(5), 772-784. doi:10.1111/tpj.12848 es_ES
dc.description.references Puerta, M. L., Shukla, V., Dalle Carbonare, L., Weits, D. A., Perata, P., Licausi, F., & Giuntoli, B. (2019). A Ratiometric Sensor Based on Plant N-Terminal Degrons Able to Report Oxygen Dynamics in Saccharomyces cerevisiae. Journal of Molecular Biology, 431(15), 2810-2820. doi:10.1016/j.jmb.2019.05.023 es_ES
dc.description.references Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2010). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248(3), 447-455. doi:10.1007/s00709-010-0206-9 es_ES
dc.description.references Singh, P. K., Indoliya, Y., Chauhan, A. S., Singh, S. P., Singh, A. P., Dwivedi, S., … Chakrabarty, D. (2017). Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Scientific Reports, 7(1). doi:10.1038/s41598-017-03923-2 es_ES
dc.description.references Staswick, P. E., & Tiryaki, I. (2004). The Oxylipin Signal Jasmonic Acid Is Activated by an Enzyme That Conjugates It to Isoleucine in Arabidopsis[W]. The Plant Cell, 16(8), 2117-2127. doi:10.1105/tpc.104.023549 es_ES
dc.description.references Staswick, P. E., Tiryaki, I., & Rowe, M. L. (2002). Jasmonate Response Locus JAR1 and Several Related Arabidopsis Genes Encode Enzymes of the Firefly Luciferase Superfamily That Show Activity on Jasmonic, Salicylic, and Indole-3-Acetic Acids in an Assay for Adenylation. The Plant Cell, 14(6), 1405-1415. doi:10.1105/tpc.000885 es_ES
dc.description.references Thomas, D. D. (2015). Breathing new life into nitric oxide signaling: A brief overview of the interplay between oxygen and nitric oxide. Redox Biology, 5, 225-233. doi:10.1016/j.redox.2015.05.002 es_ES
dc.description.references Tischer, S. V., Wunschel, C., Papacek, M., Kleigrewe, K., Hofmann, T., Christmann, A., & Grill, E. (2017). Combinatorial interaction network of abscisic acid receptors and coreceptors fromArabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(38), 10280-10285. doi:10.1073/pnas.1706593114 es_ES
dc.description.references Tsai, Y.-C., Delk, N. A., Chowdhury, N. I., & Braam, J. (2007). Arabidopsis Potential Calcium Sensors Regulate Nitric Oxide Levels and the Transition to Flowering. Plant Signaling & Behavior, 2(6), 446-454. doi:10.4161/psb.2.6.4695 es_ES
dc.description.references Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sato, T., Sonoda, Y., … Yamaguchi, J. (2009). DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. Journal of Plant Research, 122(6), 633-643. doi:10.1007/s10265-009-0252-6 es_ES
dc.description.references Van Verk, M. C., Bol, J. F., & Linthorst, H. J. (2011). WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-89 es_ES
dc.description.references Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proceedings of the National Academy of Sciences, 116(2), 358-366. doi:10.1073/pnas.1816596116 es_ES
dc.description.references Vicente, J., Mendiondo, G. M., Movahedi, M., Peirats-Llobet, M., Juan, Y., Shen, Y., … Holdsworth, M. J. (2017). The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants. Current Biology, 27(20), 3183-3190.e4. doi:10.1016/j.cub.2017.09.006 es_ES
dc.description.references Wang, P., Zhu, J.-K., & Lang, Z. (2015). Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signaling & Behavior, 10(6), e1031939. doi:10.1080/15592324.2015.1031939 es_ES
dc.description.references Wei, C.-Q., Chien, C.-W., Ai, L.-F., Zhao, J., Zhang, Z., Li, K. H., … Wang, Z.-Y. (2016). The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. Journal of Genetics and Genomics, 43(9), 555-563. doi:10.1016/j.jgg.2016.05.007 es_ES
dc.description.references White, M. D., Kamps, J. J. A. G., East, S., Taylor Kearney, L. J., & Flashman, E. (2018). The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. Journal of Biological Chemistry, 293(30), 11786-11795. doi:10.1074/jbc.ra118.003496 es_ES
dc.description.references Williams, B. P., Pignatta, D., Henikoff, S., & Gehring, M. (2015). Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLOS Genetics, 11(3), e1005142. doi:10.1371/journal.pgen.1005142 es_ES
dc.description.references Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224(3), 545-555. doi:10.1007/s00425-006-0242-z es_ES
dc.description.references Zottini, M., Costa, A., De Michele, R., Ruzzene, M., Carimi, F., & Lo Schiavo, F. (2007). Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 58(6), 1397-1405. doi:10.1093/jxb/erm001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem