Mostrar el registro sencillo del ítem
dc.contributor.author | Gomez, Maria Dolores | es_ES |
dc.contributor.author | Barro-Trastoy, Daniela | es_ES |
dc.contributor.author | Fuster Almunia, Clara | es_ES |
dc.contributor.author | Tornero Feliciano, Pablo | es_ES |
dc.contributor.author | Alonso, Jose M. | es_ES |
dc.contributor.author | PEREZ AMADOR, MIGUEL ANGEL | es_ES |
dc.date.accessioned | 2021-07-23T03:31:11Z | |
dc.date.available | 2021-07-23T03:31:11Z | |
dc.date.issued | 2020-12-31 | es_ES |
dc.identifier.issn | 0022-0957 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169899 | |
dc.description.abstract | [EN] Ovule development is essential for plant survival, as it allows correct embryo and seed development upon fertilization. The female gametophyte is formed in the central area of the nucellus during ovule development, in a complex developmental programme that involves key regulatory genes and the plant hormones auxins and brassinosteroids. Here we provide novel evidence of the role of gibberellins (GAs) in the control of megagametogenesis and embryo sac development, via the GA-dependent degradation of RGA-LIKE1 (RGL1) in the ovule primordia. YPet-rgl1.17 plants, which express a dominant version of RGL1, showed reduced fertility, mainly due to altered embryo sac formation that varied from partial to total ablation. YPet-rgl1.17 ovules followed normal development of the megaspore mother cell, meiosis, and formation of the functional megaspore, but YPet-rgl1.17 plants had impaired mitotic divisions of the functional megaspore. This phenotype is RGL1-specific, as it is not observed in any other dominant mutants of the DELLA proteins. Expression analysis of YPet-rgl1.17 coupled to in situ localization of bioactive GAs in ovule primordia led us to propose a mechanism of GA-mediated RGL1 degradation that allows proper embryo sac development. Taken together, our data unravel a novel specific role of GAs in the control of female gametophyte development. | es_ES |
dc.description.sponsorship | We wish to thank the IBMCP microscopy facility, and Ms J. Yun for technical assistance. We also thank Jennifer Nemhauser (University of Washington, USA) for the HACR sensor. Cambridge proofreading (https://proofreading.org/order/) provided proofreading and editing of this manuscript. This work was supported by grants from the Spanish Ministry for Science and Innovation-FEDER [BIO2017-83138R] to MAP-A and National Science Foundation [MCB-0923727] to JMA. MAP-A received a fellowship of the `Salvador de Madariaga' program from Spanish Ministry of Science and Innovation. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Journal of Experimental Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Arabidopsis | es_ES |
dc.subject | DELLA | es_ES |
dc.subject | Development | es_ES |
dc.subject | Embryo sac | es_ES |
dc.subject | Gibberellin | es_ES |
dc.subject | Megagametogenesis | es_ES |
dc.subject | Ovule | es_ES |
dc.subject | RGL1 | es_ES |
dc.title | Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/jxb/eraa395 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0923727/US/Molecular Genetics of Ethylene-auxin Interactions in Arabidopsis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83138-R/ES/LAS GIBERELINAS EN EL CONTROL DE LA FORMACION DE OVULOS Y SEMILLAS: DISEÑO DE HERRAMIENTAS PARA LA MEJORA VEGETAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Gomez, MD.; Barro-Trastoy, D.; Fuster Almunia, C.; Tornero Feliciano, P.; Alonso, JM.; Perez Amador, MA. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany. 71(22):7059-7072. https://doi.org/10.1093/jxb/eraa395 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/jxb/eraa395 | es_ES |
dc.description.upvformatpinicio | 7059 | es_ES |
dc.description.upvformatpfin | 7072 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.pmid | 32845309 | es_ES |
dc.identifier.pmcid | PMC7906783 | es_ES |
dc.relation.pasarela | S\433419 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | National Science Foundation, EEUU | es_ES |
dc.description.references | Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546 | es_ES |
dc.description.references | Battaglia, R., Brambilla, V., & Colombo, L. (2008). Morphological analysis of female gametophyte development in thebel1 stk shp1 shp2mutant. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 142(3), 643-649. doi:10.1080/11263500802411098 | es_ES |
dc.description.references | Beeckman, T., De Rycke, R., Viane, R., & Inzé, D. (2000). Histological Study of Seed Coat Development in Arabidopsis thaliana. Journal of Plant Research, 113(2), 139-148. doi:10.1007/pl00013924 | es_ES |
dc.description.references | Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 | es_ES |
dc.description.references | Brumos, J., Zhao, C., Gong, Y., Soriano, D., Patel, A. P., Perez-Amador, M. A., … Alonso, J. M. (2019). An Improved Recombineering Toolset for Plants. The Plant Cell, 32(1), 100-122. doi:10.1105/tpc.19.00431 | es_ES |
dc.description.references | Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x | es_ES |
dc.description.references | Coen, O., Lu, J., Xu, W., De Vos, D., Péchoux, C., Domergue, F., … Magnani, E. (2019). Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1877-9 | es_ES |
dc.description.references | Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050 | es_ES |
dc.description.references | Davière, J.-M., & Achard, P. (2013). Gibberellin signaling in plants. Development, 140(6), 1147-1151. doi:10.1242/dev.087650 | es_ES |
dc.description.references | Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011 | es_ES |
dc.description.references | Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098 | es_ES |
dc.description.references | Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0 | es_ES |
dc.description.references | Fleck, B., & Harberd, N. P. (2002). Evidence that theArabidopsisnuclear gibberellin signalling protein GAI is not destabilised by gibberellin. The Plant Journal, 32(6), 935-947. doi:10.1046/j.1365-313x.2002.01478.x | es_ES |
dc.description.references | Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109 | es_ES |
dc.description.references | Gallego-Bartolome, J., Minguet, E. G., Marin, J. A., Prat, S., Blazquez, M. A., & Alabadi, D. (2010). Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis. Molecular Biology and Evolution, 27(6), 1247-1256. doi:10.1093/molbev/msq012 | es_ES |
dc.description.references | Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865 | es_ES |
dc.description.references | G�mez, M. D., Beltr�n, J.-P., & Ca�as, L. A. (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219(6), 967-981. doi:10.1007/s00425-004-1300-z | es_ES |
dc.description.references | Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014 | es_ES |
dc.description.references | Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231 | es_ES |
dc.description.references | Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1 | es_ES |
dc.description.references | Khakhar, A., Leydon, A. R., Lemmex, A. C., Klavins, E., & Nemhauser, J. L. (2018). Synthetic hormone-responsive transcription factors can monitor and re-program plant development. eLife, 7. doi:10.7554/elife.34702 | es_ES |
dc.description.references | Koorneef, M., Elgersma, A., Hanhart, C. J., Loenen-Martinet, E. P., Rijn, L., & Zeevaart, J. A. D. (1985). A gibberellin insensitive mutant of Arabidopsis thaliana. Physiologia Plantarum, 65(1), 33-39. doi:10.1111/j.1399-3054.1985.tb02355.x | es_ES |
dc.description.references | Kurihara, D., Mizuta, Y., Sato, Y., & Higashiyama, T. (2015). ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development. doi:10.1242/dev.127613 | es_ES |
dc.description.references | Lee, S. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes & Development, 16(5), 646-658. doi:10.1101/gad.969002 | es_ES |
dc.description.references | Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis. Science Signaling, 5(244). doi:10.1126/scisignal.2002908 | es_ES |
dc.description.references | Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015 | es_ES |
dc.description.references | Lora, J., Herrero, M., Tucker, M. R., & Hormaza, J. I. (2016). The transition from somatic to germline identity shows conserved and specialized features during angiosperm evolution. New Phytologist, 216(2), 495-509. doi:10.1111/nph.14330 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194 | es_ES |
dc.description.references | Pinto, S. C., Mendes, M. A., Coimbra, S., & Tucker, M. R. (2019). Revisiting the Female Germline and Its Expanding Toolbox. Trends in Plant Science, 24(5), 455-467. doi:10.1016/j.tplants.2019.02.003 | es_ES |
dc.description.references | Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.x | es_ES |
dc.description.references | Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016 | es_ES |
dc.description.references | Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036 | es_ES |
dc.description.references | Tucker, M. R., Okada, T., Hu, Y., Scholefield, A., Taylor, J. M., & Koltunow, A. M. G. (2012). Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development, 139(8), 1399-1404. doi:10.1242/dev.075390 | es_ES |
dc.description.references | Ursache, R., Andersen, T. G., Marhavý, P., & Geldner, N. (2018). A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. The Plant Journal, 93(2), 399-412. doi:10.1111/tpj.13784 | es_ES |
dc.description.references | Villanueva, J. M., Broadhvest, J., Hauser, B. A., Meister, R. J., Schneitz, K., & Gasser, C. S. (1999). INNER NO OUTER regulates abaxial- adaxial patterning in Arabidopsis ovules. Genes & Development, 13(23), 3160-3169. doi:10.1101/gad.13.23.3160 | es_ES |
dc.description.references | Wen, C.-K., & Chang, C. (2002). Arabidopsis RGL1 Encodes a Negative Regulator of Gibberellin Responses. The Plant Cell, 14(1), 87-100. doi:10.1105/tpc.010325 | es_ES |
dc.description.references | Wu, J., Mohamed, D., Dowhanik, S., Petrella, R., Gregis, V., Li, J., … Gazzarrini, S. (2020). Spatiotemporal Restriction of FUSCA3 Expression by Class I BPCs Promotes Ovule Development and Coordinates Embryo and Endosperm Growth. The Plant Cell, 32(6), 1886-1904. doi:10.1105/tpc.19.00764 | es_ES |
dc.description.references | Yang, W.-C., Shi, D.-Q., & Chen, Y.-H. (2010). Female Gametophyte Development in Flowering Plants. Annual Review of Plant Biology, 61(1), 89-108. doi:10.1146/annurev-arplant-042809-112203 | es_ES |
dc.description.references | Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108 | es_ES |
dc.description.references | Zhao, L., He, J., Cai, H., Lin, H., Li, Y., Liu, R., … Qin, Y. (2014). Comparative expression profiling reveals gene functions in female meiosis and gametophyte development in Arabidopsis. The Plant Journal, 80(4), 615-628. doi:10.1111/tpj.12657 | es_ES |
dc.description.references | Zhou, R., Benavente, L. M., Stepanova, A. N., & Alonso, J. M. (2011). A recombineering-based gene tagging system for Arabidopsis. The Plant Journal, 66(4), 712-723. doi:10.1111/j.1365-313x.2011.04524.x | es_ES |