Mostrar el registro sencillo del ítem
dc.contributor.author | Ferrer-Polonio, Eva | es_ES |
dc.contributor.author | Fernández-Navarro, Julián | es_ES |
dc.contributor.author | Iborra-Clar, María Isabel | es_ES |
dc.contributor.author | Alcaina-Miranda, María Isabel | es_ES |
dc.contributor.author | Mendoza Roca, José Antonio | es_ES |
dc.date.accessioned | 2021-07-23T03:31:16Z | |
dc.date.available | 2021-07-23T03:31:16Z | |
dc.date.issued | 2020-06-01 | es_ES |
dc.identifier.issn | 0301-4797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/169901 | |
dc.description.abstract | [EN] Nowadays, alternative options to conventional wastewater treatment should be studied due to rising concerns emerged by the presence of pharmaceuticals compounds (PhCs) in the aquatic environment. In this work, a combined system including biological treatment by activated sludge plus adsorption with activated carbon is proposed to remove three selected drugs (acetaminophen (ACT), caffeine (CAF) and ibuprofen (IBU)) in a concentration of 2 mg L-1 of each one. For it three sequencing batch reactors (SBR) were operated. SBR-B treated a synthetic wastewater (SWW) without target drugs and SBR-PhC and SBR-PhC + AC operated with SWW doped with the three drugs, adding into SBR-PhC + AC 1.5 g L-1 of a mesoporous granular activated carbon. Results showed that the hybrid system SBR-activated carbon produced an effluent free of PhCs, which in addition had higher quality than that achieved in a conventional activated sludge treatment in terms of lower COD, turbidity and SMP concentrations. On the other hand, five possible routes of removal for target drugs during the biological treatment were studied. Hydrolysis, oxidation and volatilization pathways were negligible after 6 h of reaction time. Adsorption mute only was significant for ACT, which was adsorbed completely after 5 h of reaction, while only 1.9% of CAF and 5.6% of IBU were adsorbed. IBU was the least biodegradable compound. | es_ES |
dc.description.sponsorship | This work was supported by Spanish grants AICO/2018/292 of the Generalitat Valenciana. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Emerging pollutants | es_ES |
dc.subject | Pharmaceutical compounds | es_ES |
dc.subject | Sequencing bath reactor | es_ES |
dc.subject | Activated carbon | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jenvman.2020.110368 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2018%2F300/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Ferrer-Polonio, E.; Fernández-Navarro, J.; Iborra-Clar, MI.; Alcaina-Miranda, MI.; Mendoza Roca, JA. (2020). Removal of pharmaceutical compounds commonly-found in wastewater through a hybrid biological and adsorption process. Journal of Environmental Management. 263:1-8. https://doi.org/10.1016/j.jenvman.2020.110368 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jenvman.2020.110368 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 263 | es_ES |
dc.identifier.pmid | 32883474 | es_ES |
dc.relation.pasarela | S\406694 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | Al-Khazrajy, O. S. A., & Boxall, A. B. A. (2016). Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems. Journal of Hazardous Materials, 317, 198-209. doi:10.1016/j.jhazmat.2016.05.065 | es_ES |
dc.description.references | Alygizakis, N. A., Gago-Ferrero, P., Borova, V. L., Pavlidou, A., Hatzianestis, I., & Thomaidis, N. S. (2016). Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Science of The Total Environment, 541, 1097-1105. doi:10.1016/j.scitotenv.2015.09.145 | es_ES |
dc.description.references | Azimi, S. C., Shirini, F., & Pendashteh, A. (2019). Evaluation of COD and turbidity removal from woodchips wastewater using biologically sequenced batch reactor. Process Safety and Environmental Protection, 128, 211-227. doi:10.1016/j.psep.2019.05.043 | es_ES |
dc.description.references | Boxall, A. B. A. (2004). The environmental side effects of medication. EMBO reports, 5(12), 1110-1116. doi:10.1038/sj.embor.7400307 | es_ES |
dc.description.references | Carballa, M., Omil, F., & Lema, J. M. (2005). Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Research, 39(19), 4790-4796. doi:10.1016/j.watres.2005.09.018 | es_ES |
dc.description.references | Couto, C. F., Lange, L. C., & Amaral, M. C. S. (2019). Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. Journal of Water Process Engineering, 32, 100927. doi:10.1016/j.jwpe.2019.100927 | es_ES |
dc.description.references | Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of The Total Environment, 639, 1334-1348. doi:10.1016/j.scitotenv.2018.04.351 | es_ES |
dc.description.references | Dong, X., Zhou, W., & He, S. (2013). Removal of anaerobic soluble microbial products in a biological activated carbon reactor. Journal of Environmental Sciences, 25(9), 1745-1753. doi:10.1016/s1001-0742(12)60224-1 | es_ES |
dc.description.references | Fan, H., Li, J., Zhang, L., & Feng, L. (2014). Contribution of sludge adsorption and biodegradation to the removal of five pharmaceuticals in a submerged membrane bioreactor. Biochemical Engineering Journal, 88, 101-107. doi:10.1016/j.bej.2014.04.008 | es_ES |
dc.description.references | Frølund, B., Palmgren, R., Keiding, K., & Nielsen, P. H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 30(8), 1749-1758. doi:10.1016/0043-1354(95)00323-1 | es_ES |
dc.description.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M.-Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. doi:10.1016/j.scitotenv.2018.09.125 | es_ES |
dc.description.references | Goel, R., Mino, T., Satoh, H., & Matsuo, T. (1998). Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor. Water Research, 32(7), 2081-2088. doi:10.1016/s0043-1354(97)00425-9 | es_ES |
dc.description.references | Greenham, R. T., Miller, K. Y., & Tong, A. (2019). Removal efficiencies of top-used pharmaceuticals at sewage treatment plants with various technologies. Journal of Environmental Chemical Engineering, 7(5), 103294. doi:10.1016/j.jece.2019.103294 | es_ES |
dc.description.references | Hampel, M., Alonso, E., Aparicio, I., Bron, J. E., Santos, J. L., Taggart, J. B., & Leaver, M. J. (2010). Potential physiological effects of pharmaceutical compounds in Atlantic salmon (Salmo salar) implied by transcriptomic analysis. Environmental Science and Pollution Research, 17(4), 917-933. doi:10.1007/s11356-009-0282-6 | es_ES |
dc.description.references | Krishnan, V., Ahmad, D., & Jeru, J. B. (2008). Influence of COD:N:P ratio on dark greywater treatment using a sequencing batch reactor. Journal of Chemical Technology & Biotechnology, 83(5), 756-762. doi:10.1002/jctb.1842 | es_ES |
dc.description.references | Li, B., & Zhang, T. (2010). Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process. Environmental Science & Technology, 44(9), 3468-3473. doi:10.1021/es903490h | es_ES |
dc.description.references | Lin, A. Y.-C., Yu, T.-H., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167(1-3), 1163-1169. doi:10.1016/j.jhazmat.2009.01.108 | es_ES |
dc.description.references | Mezzelani, M., Gorbi, S., & Regoli, F. (2018). Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Marine Environmental Research, 140, 41-60. doi:10.1016/j.marenvres.2018.05.001 | es_ES |
dc.description.references | Min, X., Li, W., Wei, Z., Spinney, R., Dionysiou, D. D., Seo, Y., … Xiao, R. (2018). Sorption and biodegradation of pharmaceuticals in aerobic activated sludge system: A combined experimental and theoretical mechanistic study. Chemical Engineering Journal, 342, 211-219. doi:10.1016/j.cej.2018.01.012 | es_ES |
dc.description.references | Molina-Muñoz, M., Poyatos, J. M., Rodelas, B., Pozo, C., Manzanera, M., Hontoria, E., & Gonzalez-Lopez, J. (2010). Microbial enzymatic activities in a pilot-scale MBR experimental plant under different working conditions. Bioresource Technology, 101(2), 696-704. doi:10.1016/j.biortech.2009.08.071 | es_ES |
dc.description.references | Namkung, E., & Rittmann, B. E. (1986). Soluble microbial products (SMP) formation kinetics by biofilms. Water Research, 20(6), 795-806. doi:10.1016/0043-1354(86)90106-5 | es_ES |
dc.description.references | Palli, L., Spina, F., Varese, G. C., Vincenzi, M., Aragno, M., Arcangeli, G., … Gori, R. (2019). Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. International Journal of Hygiene and Environmental Health, 222(4), 717-725. doi:10.1016/j.ijheh.2019.05.006 | es_ES |
dc.description.references | Pan, M., & Chu, L. M. (2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution, 231, 829-836. doi:10.1016/j.envpol.2017.08.051 | es_ES |
dc.description.references | Patrolecco, L., Ademollo, N., Grenni, P., Tolomei, A., Barra Caracciolo, A., & Capri, S. (2013). Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchemical Journal, 107, 165-171. doi:10.1016/j.microc.2012.05.035 | es_ES |
dc.description.references | Peng, J., Wang, X., Yin, F., & Xu, G. (2019). Characterizing the removal routes of seven pharmaceuticals in the activated sludge process. Science of The Total Environment, 650, 2437-2445. doi:10.1016/j.scitotenv.2018.10.004 | es_ES |
dc.description.references | Hamon, P., Villain, M., & Marrot, B. (2014). Determination of sorption properties of micropollutants: What is the most suitable activated sludge inhibition technique to preserve the biomass structure? Chemical Engineering Journal, 242, 260-268. doi:10.1016/j.cej.2013.07.117 | es_ES |
dc.description.references | Pomiès, M., Choubert, J.-M., Wisniewski, C., & Coquery, M. (2013). Modelling of micropollutant removal in biological wastewater treatments: A review. Science of The Total Environment, 443, 733-748. doi:10.1016/j.scitotenv.2012.11.037 | es_ES |
dc.description.references | Rabiet, M., Togola, A., Brissaud, F., Seidel, J.-L., Budzinski, H., & Elbaz-Poulichet, F. (2006). Consequences of Treated Water Recycling as Regards Pharmaceuticals and Drugs in Surface and Ground Waters of a Medium-sized Mediterranean Catchment. Environmental Science & Technology, 40(17), 5282-5288. doi:10.1021/es060528p | es_ES |
dc.description.references | Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164(2-3), 1509-1516. doi:10.1016/j.jhazmat.2008.09.073 | es_ES |
dc.description.references | Thiebault, T., Chassiot, L., Fougère, L., Destandau, E., Simonneau, A., Van Beek, P., … Chapron, E. (2017). Record of pharmaceutical products in river sediments: A powerful tool to assess the environmental impact of urban management? Anthropocene, 18, 47-56. doi:10.1016/j.ancene.2017.05.006 | es_ES |
dc.description.references | Vona, A., di Martino, F., Garcia-Ivars, J., Picó, Y., Mendoza-Roca, J.-A., & Iborra-Clar, M.-I. (2015). Comparison of different removal techniques for selected pharmaceuticals. Journal of Water Process Engineering, 5, 48-57. doi:10.1016/j.jwpe.2014.12.011 | es_ES |
dc.description.references | Wattanasin, P., Saetear, P., Wilairat, P., Nacapricha, D., & Teerasong, S. (2015). Zone fluidics for measurement of octanol–water partition coefficient of drugs. Analytica Chimica Acta, 860, 1-7. doi:10.1016/j.aca.2014.08.025 | es_ES |
dc.description.references | Zhou, S., Di Paolo, C., Wu, X., Shao, Y., Seiler, T.-B., & Hollert, H. (2019). Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environment International, 128, 1-10. doi:10.1016/j.envint.2019.04.034 | es_ES |
dc.description.references | Zuriaga-Agustí, E., Bes-Piá, A., Mendoza-Roca, J. A., & Alonso-Molina, J. L. (2013). Influence of extraction methods on proteins and carbohydrates analysis from MBR activated sludge flocs in view of improving EPS determination. Separation and Purification Technology, 112, 1-10. doi:10.1016/j.seppur.2013.03.048 | es_ES |