- -

Mean Li-Yorke chaos in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean Li-Yorke chaos in Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernardes, N. C., Jr. es_ES
dc.contributor.author Bonilla, A. es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2021-07-23T03:31:20Z
dc.date.available 2021-07-23T03:31:20Z
dc.date.issued 2020-02-01 es_ES
dc.identifier.issn 0022-1236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/169903
dc.description.abstract [EN] We investigate the notion of mean Li-Yorke chaos for operators on Banach spaces. We show that it differs from the notion of distributional chaos of type 2, contrary to what happens in the context of topological dynamics on compact metric spaces. We prove that an operator is mean Li-Yorke chaotic if and only if it has an absolutely mean irregular vector. As a consequence, absolutely Cesaro bounded operators are never mean Li-Yorke chaotic. Dense mean Li-Yorke chaos is shown to be equivalent to the existence of a dense (or residual) set of absolutely mean irregular vectors. As a consequence, every mean Li-Yorke chaotic operator is densely mean Li-Yorke chaotic on some infinite-dimensional closed invariant subspace. A (Dense) Mean Li-Yorke Chaos Criterion and a sufficient condition for the existence of a dense absolutely mean irregular manifold are also obtained. Moreover, we construct an example of an invertible hypercyclic operator T such that every nonzero vector is absolutely mean irregular for both T and T-1. Several other examples are also presented. Finally, mean Li-Yorke chaos is also investigated for C-0-semigroups of operators on Banach spaces. es_ES
dc.description.sponsorship This work was partially done on a visit of the first author to the Institut Universitari de Matematica Pura i Aplicada at Universitat Politecnica de Valencia, and he is very grateful for the hospitality and support. The first author was partially supported by project #304207/2018-7 of CNPq and by grant #2017/22588-0 of Sao Paulo Research Foundation (FAPESP). The second and third authors were supported by MINECO, Project MTM2016-75963-P. The third author was also supported by Generalitat Valenciana, Project PROMETEO/2017/102. We thank Frederic Bayart for providing us Theorem 27, which answers a previous question of us. We also thank the referee whose careful comments produced an improvement in the presentation of the article. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Mean Li-Yorke chaos es_ES
dc.subject Absolute Cesaro boundedness es_ES
dc.subject Distributional chaos es_ES
dc.subject Hypercyclic operators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Mean Li-Yorke chaos in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2019.108343 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//304207%2F2018-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2017%2F22588-0/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bernardes, NCJ.; Bonilla, A.; Peris Manguillot, A. (2020). Mean Li-Yorke chaos in Banach spaces. Journal of Functional Analysis. 278(3):1-31. https://doi.org/10.1016/j.jfa.2019.108343 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfa.2019.108343 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 31 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 278 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\401563 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Albanese, A., Barrachina, X., Mangino, E. M., & Peris, A. (2013). Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 12(5), 2069-2082. doi:10.3934/cpaa.2013.12.2069 es_ES
dc.description.references Barrachina, X., & Conejero, J. A. (2012). Devaney Chaos and Distributional Chaos in the Solution of Certain Partial Differential Equations. Abstract and Applied Analysis, 2012, 1-11. doi:10.1155/2012/457019 es_ES
dc.description.references Barrachina, X., & Peris, A. (2012). Distributionally chaotic translation semigroups. Journal of Difference Equations and Applications, 18(4), 751-761. doi:10.1080/10236198.2011.625945 es_ES
dc.description.references Bayart, F., & Grivaux, S. (2006). Frequently hypercyclic operators. Transactions of the American Mathematical Society, 358(11), 5083-5117. doi:10.1090/s0002-9947-06-04019-0 es_ES
dc.description.references BAYART, F., & RUZSA, I. Z. (2013). Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory and Dynamical Systems, 35(3), 691-709. doi:10.1017/etds.2013.77 es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011 es_ES
dc.description.references Bernal-González, L., & Bonilla, A. (2016). Order of growth of distributionally irregular entire functions for the differentiation operator. Complex Variables and Elliptic Equations, 61(8), 1176-1186. doi:10.1080/17476933.2016.1149820 es_ES
dc.description.references Bernardes, N. C., Bonilla, A., Müller, V., & Peris, A. (2013). Distributional chaos for linear operators. Journal of Functional Analysis, 265(9), 2143-2163. doi:10.1016/j.jfa.2013.06.019 es_ES
dc.description.references BERNARDES, N. C., BONILLA, A., MÜLLER, V., & PERIS, A. (2014). Li–Yorke chaos in linear dynamics. Ergodic Theory and Dynamical Systems, 35(6), 1723-1745. doi:10.1017/etds.2014.20 es_ES
dc.description.references Bernardes, N. C., Peris, A., & Rodenas, F. (2017). Set-Valued Chaos in Linear Dynamics. Integral Equations and Operator Theory, 88(4), 451-463. doi:10.1007/s00020-017-2394-6 es_ES
dc.description.references Bernardes, N. C., Bonilla, A., Peris, A., & Wu, X. (2018). Distributional chaos for operators on Banach spaces. Journal of Mathematical Analysis and Applications, 459(2), 797-821. doi:10.1016/j.jmaa.2017.11.005 es_ES
dc.description.references Bès, J., Menet, Q., Peris, A., & Puig, Y. (2015). Recurrence properties of hypercyclic operators. Mathematische Annalen, 366(1-2), 545-572. doi:10.1007/s00208-015-1336-3 es_ES
dc.description.references Conejero, J. A., Müller, V., & Peris, A. (2007). Hypercyclic behaviour of operators in a hypercyclic <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroup. Journal of Functional Analysis, 244(1), 342-348. doi:10.1016/j.jfa.2006.12.008 es_ES
dc.description.references Alberto Conejero, J., Rodenas, F., & Trujillo, M. (2015). Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 35(2), 653-668. doi:10.3934/dcds.2015.35.653 es_ES
dc.description.references Downarowicz, T. (2013). Positive topological entropy implies chaos DC2. Proceedings of the American Mathematical Society, 142(1), 137-149. doi:10.1090/s0002-9939-2013-11717-x es_ES
dc.description.references Feldman, N. S. (2002). Hypercyclicity and supercyclicity for invertible bilateral weighted shifts. Proceedings of the American Mathematical Society, 131(2), 479-485. doi:10.1090/s0002-9939-02-06537-1 es_ES
dc.description.references Foryś-Krawiec, M., Oprocha, P., & Štefánková, M. (2017). Distributionally chaotic systems of type 2 and rigidity. Journal of Mathematical Analysis and Applications, 452(1), 659-672. doi:10.1016/j.jmaa.2017.02.056 es_ES
dc.description.references Garcia-Ramos, F., & Jin, L. (2016). Mean proximality and mean Li-Yorke chaos. Proceedings of the American Mathematical Society, 145(7), 2959-2969. doi:10.1090/proc/13440 es_ES
dc.description.references Grivaux, S., & Matheron, É. (2014). Invariant measures for frequently hypercyclic operators. Advances in Mathematics, 265, 371-427. doi:10.1016/j.aim.2014.08.002 es_ES
dc.description.references Hou, B., Cui, P., & Cao, Y. (2009). Chaos for Cowen-Douglas operators. Proceedings of the American Mathematical Society, 138(3), 929-936. doi:10.1090/s0002-9939-09-10046-1 es_ES
dc.description.references Huang, W., Li, J., & Ye, X. (2014). Stable sets and mean Li–Yorke chaos in positive entropy systems. Journal of Functional Analysis, 266(6), 3377-3394. doi:10.1016/j.jfa.2014.01.005 es_ES
dc.description.references León-Saavedra, F. (2002). Operators with hypercyclic Cesaro means. Studia Mathematica, 152(3), 201-215. doi:10.4064/sm152-3-1 es_ES
dc.description.references LI, J., TU, S., & YE, X. (2014). Mean equicontinuity and mean sensitivity. Ergodic Theory and Dynamical Systems, 35(8), 2587-2612. doi:10.1017/etds.2014.41 es_ES
dc.description.references Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049 es_ES
dc.description.references Martínez-Giménez, F., Oprocha, P., & Peris, A. (2012). Distributional chaos for operators with full scrambled sets. Mathematische Zeitschrift, 274(1-2), 603-612. doi:10.1007/s00209-012-1087-8 es_ES
dc.description.references Menet, Q. (2017). Linear chaos and frequent hypercyclicity. Transactions of the American Mathematical Society, 369(7), 4977-4994. doi:10.1090/tran/6808 es_ES
dc.description.references Müller, V., & Vrs˘ovský, J. (2009). Orbits of Linear Operators Tending to Infinity. Rocky Mountain Journal of Mathematics, 39(1). doi:10.1216/rmj-2009-39-1-219 es_ES
dc.description.references Wu, X. (2013). Li–Yorke chaos of translation semigroups. Journal of Difference Equations and Applications, 20(1), 49-57. doi:10.1080/10236198.2013.809712 es_ES
dc.description.references Wu, X., Oprocha, P., & Chen, G. (2016). On various definitions of shadowing with average error in tracing. Nonlinearity, 29(7), 1942-1972. doi:10.1088/0951-7715/29/7/1942 es_ES
dc.description.references Wu, X., Wang, L., & Chen, G. (2017). Weighted backward shift operators with invariant distributionally scrambled subsets. Annals of Functional Analysis, 8(2), 199-210. doi:10.1215/20088752-3802705 es_ES
dc.description.references Yin, Z., & Yang, Q. (2017). Distributionally n-Scrambled Set for Weighted Shift Operators. Journal of Dynamical and Control Systems, 23(4), 693-708. doi:10.1007/s10883-017-9359-6 es_ES
dc.description.references Yin, Z., & Yang, Q. (2017). Distributionally n-chaotic dynamics for linear operators. Revista Matemática Complutense, 31(1), 111-129. doi:10.1007/s13163-017-0226-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem