- -

Recent developments and fire design provisions for CFST columns and slim-floor beams

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent developments and fire design provisions for CFST columns and slim-floor beams

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero, Manuel L. es_ES
dc.contributor.author Espinós Capilla, Ana es_ES
dc.contributor.author Lapuebla-Ferri, Andrés es_ES
dc.contributor.author ALBERO GABARDA, VICENTE es_ES
dc.contributor.author Hospitaler Pérez, Antonio es_ES
dc.date.accessioned 2021-07-23T03:31:26Z
dc.date.available 2021-07-23T03:31:26Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0143-974X es_ES
dc.identifier.uri http://hdl.handle.net/10251/169906
dc.description.abstract [EN] This paper summarizes the latest technical and scientific progresses on steel-concrete composite structures exposed to fire, presenting the recent research carried out on this subject and the progress of the design codes. In particular, this review focuses on concrete-filled steel tubular columns and slim-floor beams, topics where the authors have carried out extensive research during the last years. The more recent experimental and numerical studies performed by the authors as well as those available in the literature are presented, along with applications where these composite elements have been used in practice. The use of advanced materials, such as high strength steel and concrete, stainless steel, lightweight concrete or geopolymer concrete is considered for the enhancement of the fire behaviour of concrete-filled steel tubular columns and slim-floor beams. Finally, the currently available design methods for the calculation of isolated members at elevated temperatures are reviewed and the recent progress of the code provisions for the fire design of these composite elements is presented. es_ES
dc.description.sponsorship The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Constructional Steel Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Concrete-filled steel tubular columns es_ES
dc.subject Slim-floor beams es_ES
dc.subject Fire resistance es_ES
dc.subject Innovative sections es_ES
dc.subject Advanced materials es_ES
dc.subject Design codes es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Recent developments and fire design provisions for CFST columns and slim-floor beams es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jcsr.2020.106159 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-67492-R/ES/MEJORA DEL COMPORTAMIENTO RESISTENTE FRENTE A ALTAS TEMPERATURAS DE VIGAS MIXTAS "SLIM-FLOOR" CON MATERIALES AVANZADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Romero, ML.; Espinós Capilla, A.; Lapuebla-Ferri, A.; Albero Gabarda, V.; Hospitaler Pérez, A. (2020). Recent developments and fire design provisions for CFST columns and slim-floor beams. Journal of Constructional Steel Research. 172:1-21. https://doi.org/10.1016/j.jcsr.2020.106159 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jcsr.2020.106159 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 172 es_ES
dc.relation.pasarela S\413229 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Han, L.-H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211-228. doi:10.1016/j.jcsr.2014.04.016 es_ES
dc.description.references Romero, M. L., Moliner, V., Espinos, A., Ibañez, C., & Hospitaler, A. (2011). Fire behavior of axially loaded slender high strength concrete-filled tubular columns. Journal of Constructional Steel Research, 67(12), 1953-1965. doi:10.1016/j.jcsr.2011.06.012 es_ES
dc.description.references Moliner, V., Espinos, A., Romero, M. L., & Hospitaler, A. (2013). Fire behavior of eccentrically loaded slender high strength concrete-filled tubular columns. Journal of Constructional Steel Research, 83, 137-146. doi:10.1016/j.jcsr.2013.01.011 es_ES
dc.description.references Han, L.-H., Zhao, X.-L., Yang, Y.-F., & Feng, J.-B. (2003). Experimental Study and Calculation of Fire Resistance of Concrete-Filled Hollow Steel Columns. Journal of Structural Engineering, 129(3), 346-356. doi:10.1061/(asce)0733-9445(2003)129:3(346) es_ES
dc.description.references Han, L.-H., Yang, Y.-F., & Xu, L. (2003). An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns. Journal of Constructional Steel Research, 59(4), 427-452. doi:10.1016/s0143-974x(02)00041-x es_ES
dc.description.references Espinos, A., Romero, M. L., Portolés, J. M., & Hospitaler, A. (2014). Ambient and fire behavior of eccentrically loaded elliptical slender concrete-filled tubular columns. Journal of Constructional Steel Research, 100, 97-107. doi:10.1016/j.jcsr.2014.04.025 es_ES
dc.description.references Ali, F., Nadjai, A., & Goodfellow, N. (2015). Experimental and numerical study on the performance of hollow and concrete-filled elliptical steel columns subjected to severe fire. Fire and Materials, 40(4), 635-652. doi:10.1002/fam.2316 es_ES
dc.description.references Espinos, A., Romero, M. L., Serra, E., & Hospitaler, A. (2015). Circular and square slender concrete-filled tubular columns under large eccentricities and fire. Journal of Constructional Steel Research, 110, 90-100. doi:10.1016/j.jcsr.2015.03.011 es_ES
dc.description.references Espinos, A., Romero, M. L., Serra, E., & Hospitaler, A. (2015). Experimental investigation on the fire behaviour of rectangular and elliptical slender concrete-filled tubular columns. Thin-Walled Structures, 93, 137-148. doi:10.1016/j.tws.2015.03.018 es_ES
dc.description.references Zhao, X.-L., & Han, L.-H. (2006). Double skin composite construction. Progress in Structural Engineering and Materials, 8(3), 93-102. doi:10.1002/pse.216 es_ES
dc.description.references Tao, Z., Han, L.-H., & Zhao, X.-L. (2004). Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. Journal of Constructional Steel Research, 60(8), 1129-1158. doi:10.1016/j.jcsr.2003.11.008 es_ES
dc.description.references Tao, Z., & Han, L.-H. (2006). Behaviour of concrete-filled double skin rectangular steel tubular beam–columns. Journal of Constructional Steel Research, 62(7), 631-646. doi:10.1016/j.jcsr.2005.11.008 es_ES
dc.description.references Huang, H., Han, L.-H., Tao, Z., & Zhao, X.-L. (2010). Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns. Journal of Constructional Steel Research, 66(4), 542-555. doi:10.1016/j.jcsr.2009.09.014 es_ES
dc.description.references Xiong, M.-X., Xiong, D.-X., & Liew, J. Y. R. (2017). Behaviour of steel tubular members infilled with ultra high strength concrete. Journal of Constructional Steel Research, 138, 168-183. doi:10.1016/j.jcsr.2017.07.001 es_ES
dc.description.references Lu, H., Han, L.-H., & Zhao, X.-L. (2010). Fire performance of self-consolidating concrete filled double skin steel tubular columns: Experiments. Fire Safety Journal, 45(2), 106-115. doi:10.1016/j.firesaf.2009.12.001 es_ES
dc.description.references Romero, M. L., Espinos, A., Portolés, J. M., Hospitaler, A., & Ibañez, C. (2015). Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire. Engineering Structures, 99, 536-545. doi:10.1016/j.engstruct.2015.05.026 es_ES
dc.description.references Lange, J., & Wohlfeil, N. (2007). Untersuchungen zum Werkstoffverhalten des Feinkornbaustahls S 460 unter erhöhten Temperaturen. Bautechnik, 84(10), 711-720. doi:10.1002/bate.200710061 es_ES
dc.description.references Qiang, X., Bijlaard, F., & Kolstein, H. (2012). Dependence of mechanical properties of high strength steel S690 on elevated temperatures. Construction and Building Materials, 30, 73-79. doi:10.1016/j.conbuildmat.2011.12.018 es_ES
dc.description.references Choi, I.-R., Chung, K.-S., & Kim, D.-H. (2014). Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures. Materials & Design, 63, 544-551. doi:10.1016/j.matdes.2014.06.035 es_ES
dc.description.references Xiong, M.-X., & Liew, J. Y. R. (2016). Mechanical properties of heat-treated high tensile structural steel at elevated temperatures. Thin-Walled Structures, 98, 169-176. doi:10.1016/j.tws.2015.04.010 es_ES
dc.description.references Tondini, N., Hoang, V. L., Demonceau, J.-F., & Franssen, J.-M. (2013). Experimental and numerical investigation of high-strength steel circular columns subjected to fire. Journal of Constructional Steel Research, 80, 57-81. doi:10.1016/j.jcsr.2012.09.001 es_ES
dc.description.references Zhao, X.-L., Heidarpour, A., & Gardner, L. (2014). Recent developments in high-strength and stainless steel tubular members and connections. Steel Construction, 7(2), 65-72. doi:10.1002/stco.201410019 es_ES
dc.description.references Gardner, L., Insausti, A., Ng, K. T., & Ashraf, M. (2010). Elevated temperature material properties of stainless steel alloys. Journal of Constructional Steel Research, 66(5), 634-647. doi:10.1016/j.jcsr.2009.12.016 es_ES
dc.description.references Han, L.-H., Xu, C.-Y., & Tao, Z. (2019). Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research. Journal of Constructional Steel Research, 152, 117-131. doi:10.1016/j.jcsr.2018.02.038 es_ES
dc.description.references Tao, Z., Ghannam, M., Song, T.-Y., & Han, L.-H. (2016). Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire. Journal of Constructional Steel Research, 118, 120-134. doi:10.1016/j.jcsr.2015.11.003 es_ES
dc.description.references Han, L.-H., Chen, F., Liao, F.-Y., Tao, Z., & Uy, B. (2013). Fire performance of concrete filled stainless steel tubular columns. Engineering Structures, 56, 165-181. doi:10.1016/j.engstruct.2013.05.005 es_ES
dc.description.references Uy, B., Tao, Z., & Han, L.-H. (2011). Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research, 67(3), 360-378. doi:10.1016/j.jcsr.2010.10.004 es_ES
dc.description.references Wang, F., Han, L., & Li, W. (2018). Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression. Thin-Walled Structures, 127, 756-768. doi:10.1016/j.tws.2018.02.021 es_ES
dc.description.references Wang, F., Young, B., & Gardner, L. (2019). Experimental Study of Square and Rectangular CFDST Sections with Stainless Steel Outer Tubes under Axial Compression. Journal of Structural Engineering, 145(11), 04019139. doi:10.1061/(asce)st.1943-541x.0002408 es_ES
dc.description.references Lie, T. T., & Kodur, V. K. R. (1996). Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures. Canadian Journal of Civil Engineering, 23(2), 511-517. doi:10.1139/l96-055 es_ES
dc.description.references Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113-127. doi:10.1016/j.conbuildmat.2014.01.081 es_ES
dc.description.references Tao, Z., & Pan, Z. (2019). GEOPOLYMER CONCRETE AT AMBIENT AND ELEVATED TEMPERATURES: RECENT DEVELOPMENTS AND CHALLENGES. NED University Journal of Research, 2(Special Issue on First SACEE’19), 113-128. doi:10.35453/nedjr-stmech-2019-0007 es_ES
dc.description.references Kong, D. L. Y., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research, 40(2), 334-339. doi:10.1016/j.cemconres.2009.10.017 es_ES
dc.description.references Espinos, A., Romero, M. L., Hospitaler, A., Pascual, A. M., & Albero, V. (2015). Advanced materials for concrete-filled tubular columns and connections. Structures, 4, 105-113. doi:10.1016/j.istruc.2015.08.006 es_ES
dc.description.references Yang, Y. F., & Hou, R. (2012). Experimental behaviour of RACFST stub columns after exposed to high temperatures. Thin-Walled Structures, 59, 1-10. doi:10.1016/j.tws.2012.04.017 es_ES
dc.description.references Yang, Y.-F., & Han, L.-H. (2006). Experimental behaviour of recycled aggregate concrete filled steel tubular columns. Journal of Constructional Steel Research, 62(12), 1310-1324. doi:10.1016/j.jcsr.2006.02.010 es_ES
dc.description.references Ahmed, I. M., & Tsavdaridis, K. D. (2019). The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches. Journal of Constructional Steel Research, 155, 286-300. doi:10.1016/j.jcsr.2019.01.007 es_ES
dc.description.references Newman, G. M. (1995). Fire resistance of slim floor beams. Journal of Constructional Steel Research, 33(1-2), 87-100. doi:10.1016/0143-974x(94)00016-b es_ES
dc.description.references Ma, Z., & Mäkeläinen, P. (2000). Behavior of Composite Slim Floor Structures in Fire. Journal of Structural Engineering, 126(7), 830-837. doi:10.1061/(asce)0733-9445(2000)126:7(830) es_ES
dc.description.references Albero, V., Espinós, A., Serra, E., Romero, M. L., & Hospitaler, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures, 180, 561-573. doi:10.1016/j.engstruct.2018.11.061 es_ES
dc.description.references Ellobody, E. (2012). Composite slim floor stainless steel beam construction exposed to different fires. Engineering Structures, 36, 1-13. doi:10.1016/j.engstruct.2011.11.029 es_ES
dc.description.references Albero, V., Espinos, A., Romero, M. L., Hospitaler, A., Bihina, G., & Renaud, C. (2016). Proposal of a new method in EN1994-1-2 for the fire design of concrete-filled steel tubular columns. Engineering Structures, 128, 237-255. doi:10.1016/j.engstruct.2016.09.037 es_ES
dc.description.references Espinos, A., Romero, M. L., & Hospitaler, A. (2012). Simple calculation model for evaluating the fire resistance of unreinforced concrete filled tubular columns. Engineering Structures, 42, 231-244. doi:10.1016/j.engstruct.2012.04.022 es_ES
dc.description.references Albero, V., Espinós, A., Romero, M. L., Wang, Y. C., Renaud, C., Schaumann, P., & Nigro, E. (2018). Interaction diagram based method for fire resistance design of eccentrically loaded concrete-filled steel tubular columns. Thin-Walled Structures, 130, 641-651. doi:10.1016/j.tws.2018.06.017 es_ES
dc.description.references Ukanwa, K. U., Sharma, U., Hicks, S. J., Abu, A., Lim, J. B. P., & Clifton, G. C. (2017). Behaviour of continuous concrete filled steel tubular columns loaded concentrically in fire. Journal of Constructional Steel Research, 136, 101-109. doi:10.1016/j.jcsr.2017.05.011 es_ES
dc.description.references Romero, M. L., Cajot, L.-G., Conan, Y., & Braun, M. (2015). Fire design methods for slim-floor structures. Steel Construction, 8(2), 102-109. doi:10.1002/stco.201510012 es_ES
dc.description.references Romero, M. L., Albero, V., Espinós, A., & Hospitaler, A. (2019). Fire design of slim‐floor beams. Stahlbau, 88(7), 665-674. doi:10.1002/stab.201900030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem