- -

A methodology to estimate mechanical losses and its distribution during a real driving cycle

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A methodology to estimate mechanical losses and its distribution during a real driving cycle

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tormos, B. es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author Jiménez-Reyes, Antonio José es_ES
dc.date.accessioned 2021-07-24T03:33:12Z
dc.date.available 2021-07-24T03:33:12Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0301-679X es_ES
dc.identifier.uri http://hdl.handle.net/10251/170075
dc.description.abstract [EN] Reducing mechanical losses in internal combustion engines has been a recurrent research topic over the past few decades. Despite mechanical losses are a key issue that should be carefully addressed to reduce fuel consumption and emissions, its distribution amongst engine elements is barely covered in literature. Recent work has shown the potential advantage of using low viscosity engine oils to reduce fuel consumption, however, there is reduced knowledge on mechanical losses distribution under transient conditions. In this work, a model is presented that predicts not only the total friction losses of an engine, but determines the amount of friction energy lost in piston-ring assembly, engine bearings, camshaft and engine auxiliaries in driving cycles representing a real driving route. The stationary mechanical losses engine maps can be used due to non-dependence on mechanical losses with temperature in warm driving cycle conditions. The final results of the simulation predicts, with 2% error, fuel consumption, energy expended by the driven wheel and mechanical losses of the engine. This methodology reduces the computational cost to estimate key engine parameters in a real driving cycle such as: mechanical losses and its distribution, fuel consumption... as the total calculation time is 10 s per cycle simulated. es_ES
dc.description.sponsorship The authors would like to thank different members of the CMT-Motores Termicos team of the Universitat Politecnica de Valencia for their contribution to this work. The authors would also like to thank the Spanish Ministry of Science, Innovation and Universities and Universities for financing the PhD. Studies of Antonio J. Jimenez-Reyes (grant FPU18/02 116). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Tribology International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Driving cycles es_ES
dc.subject Friction model es_ES
dc.subject Mechanical losses distribution es_ES
dc.subject Numerical analysis es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A methodology to estimate mechanical losses and its distribution during a real driving cycle es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.triboint.2020.106208 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//FPU18%2F02116/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Tormos, B.; Martín, J.; Pla Moreno, B.; Jiménez-Reyes, AJ. (2020). A methodology to estimate mechanical losses and its distribution during a real driving cycle. Tribology International. 145:1-9. https://doi.org/10.1016/j.triboint.2020.106208 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.triboint.2020.106208 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 145 es_ES
dc.relation.pasarela S\406496 es_ES
dc.contributor.funder MINISTERIO DE CIENCIA INNOVACION Y UNIVERSIDADES es_ES
dc.description.references Dente, S. M. R., & Tavasszy, L. (2018). Policy oriented emission factors for road freight transport. Transportation Research Part D: Transport and Environment, 61, 33-41. doi:10.1016/j.trd.2017.03.021 es_ES
dc.description.references DEMIRBAS, A. (2007). Progress and recent trends in biofuels. Progress in Energy and Combustion Science, 33(1), 1-18. doi:10.1016/j.pecs.2006.06.001 es_ES
dc.description.references Mwangi, J. K., Lee, W.-J., Chang, Y.-C., Chen, C.-Y., & Wang, L.-C. (2015). An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Applied Energy, 159, 214-236. doi:10.1016/j.apenergy.2015.08.084 es_ES
dc.description.references Holmberg, K., & Erdemir, A. (2019). The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribology International, 135, 389-396. doi:10.1016/j.triboint.2019.03.024 es_ES
dc.description.references Bozza F, Bellis VD, Luigi T. EGR systems employment to reduce the fuel consumption of a downsized turbocharged engine at high-load operations. In: 69th conference of the Italian thermal engineering association. 2014. es_ES
dc.description.references Wirth M, Schulte H. Downsizing and stratified operation - An attractive combination based on a spray-guided combustion system. In: International conference on automotive technologies. 2006. es_ES
dc.description.references Benajes, J., Martín, J., García, A., Villalta, D., & Warey, A. (2017). Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering, 123, 365-376. doi:10.1016/j.applthermaleng.2017.05.101 es_ES
dc.description.references Koszela, W., Pawlus, P., Reizer, R., & Liskiewicz, T. (2018). The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines. Tribology International, 127, 470-477. doi:10.1016/j.triboint.2018.06.034 es_ES
dc.description.references Holmberg, K., & Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263-284. doi:10.1007/s40544-017-0183-5 es_ES
dc.description.references Hongwen, H., Jinquan, G., Jiankun, P., Huachun, T., & Chao, S. (2018). Real-time global driving cycle construction and the application to economy driving pro system in plug-in hybrid electric vehicles. Energy, 152, 95-107. doi:10.1016/j.energy.2018.03.061 es_ES
dc.description.references Sentoff, K. M., Aultman-Hall, L., & Holmén, B. A. (2015). Implications of driving style and road grade for accurate vehicle activity data and emissions estimates. Transportation Research Part D: Transport and Environment, 35, 175-188. doi:10.1016/j.trd.2014.11.021 es_ES
dc.description.references Faria, M. V., Duarte, G. O., Varella, R. A., Farias, T. L., & Baptista, P. C. (2019). How do road grade, road type and driving aggressiveness impact vehicle fuel consumption? Assessing potential fuel savings in Lisbon, Portugal. Transportation Research Part D: Transport and Environment, 72, 148-161. doi:10.1016/j.trd.2019.04.016 es_ES
dc.description.references Oglieve, C. J., Mohammadpour, M., & Rahnejat, H. (2017). Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(7), 883-899. doi:10.1177/0954407017702985 es_ES
dc.description.references Montazeri-Gh M, Naghizadeh M. Development of car drive cycle for simulation of emissions and fuel economy, In: SCS Europe BVBA. 2003. es_ES
dc.description.references Tormos, B., Ramírez, L., Johansson, J., Björling, M., & Larsson, R. (2017). Fuel consumption and friction benefits of low viscosity engine oils for heavy duty applications. Tribology International, 110, 23-34. doi:10.1016/j.triboint.2017.02.007 es_ES
dc.description.references Macián, V., Tormos, B., Ruiz, S., & Miró, G. (2016). Low viscosity engine oils: Study of wear effects and oil key parameters in a heavy duty engine fleet test. Tribology International, 94, 240-248. doi:10.1016/j.triboint.2015.08.028 es_ES
dc.description.references Macián, V., Tormos, B., Ruíz, S., & Ramírez, L. (2015). Potential of low viscosity oils to reduce CO2 emissions and fuel consumption of urban buses fleets. Transportation Research Part D: Transport and Environment, 39, 76-88. doi:10.1016/j.trd.2015.06.006 es_ES
dc.description.references Macián, V., Tormos, B., Bermúdez, V., & Ramírez, L. (2014). Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions. Tribology International, 79, 132-139. doi:10.1016/j.triboint.2014.06.003 es_ES
dc.description.references Payri, F., Luján, J. M., Martín, J., & Abbad, A. (2010). Digital signal processing of in-cylinder pressure for combustion diagnosis of internal combustion engines. Mechanical Systems and Signal Processing, 24(6), 1767-1784. doi:10.1016/j.ymssp.2009.12.011 es_ES
dc.description.references Fraser, N., Blaxill, H., Lumsden, G., & Bassett, M. (2009). Challenges for Increased Efficiency through Gasoline Engine Downsizing. SAE International Journal of Engines, 2(1), 991-1008. doi:10.4271/2009-01-1053 es_ES
dc.description.references Ciuffo, B., & Fontaras, G. (2017). Models and scientific tools for regulatory purposes: The case of CO2 emissions from light duty vehicles in Europe. Energy Policy, 109, 76-81. doi:10.1016/j.enpol.2017.06.057 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem