- -

PMP and Climate Variability and Change: A Review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PMP and Climate Variability and Change: A Review

Mostrar el registro completo del ítem

Salas, JD.; Anderson, ML.; Papalexiou, SM.; Francés, F. (2020). PMP and Climate Variability and Change: A Review. Journal of Hydrologic Engineering. 25(12):1-16. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170076

Ficheros en el ítem

Metadatos del ítem

Título: PMP and Climate Variability and Change: A Review
Autor: Salas, Jose D. Anderson, Michael L. Papalexiou, Simon M. Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] A state-of-the-art review on the probable maximum precipitation (PMP) as it relates to climate variability and change is presented. The review consists of an examination of the current practice and the various ...[+]
Palabras clave: Probable maximum precipitation (PMP) , Extreme precipitation , Climate change , Uncertainty , Risk
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Hydrologic Engineering. (issn: 1084-0699 )
DOI: 10.1061/(ASCE)HE.1943-5584.0002003
Editorial:
American Society of Civil Engineers
Versión del editor: https://doi.org/10.1061/(ASCE)HE.1943-5584.0002003
Código del Proyecto:
info:eu-repo/grantAgreement/NSERC//RGPIN-2019-06894/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/
Agradecimientos:
The authors would like to acknowledge the support of the Global Water Futures Program and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2019-06894). The fourth author acknowledges ...[+]
Tipo: Artículo

References

Abbs, D. J. (1999). A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resources Research, 35(3), 785-796. doi:10.1029/1998wr900013

Alexander, G. N. (1963). Using the probability of storm transposition for estimating the frequency of rare floods. Journal of Hydrology, 1(1), 46-57. doi:10.1016/0022-1694(63)90032-5

Balkema, A. A., & de Haan, L. (1974). Residual Life Time at Great Age. The Annals of Probability, 2(5). doi:10.1214/aop/1176996548 [+]
Abbs, D. J. (1999). A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resources Research, 35(3), 785-796. doi:10.1029/1998wr900013

Alexander, G. N. (1963). Using the probability of storm transposition for estimating the frequency of rare floods. Journal of Hydrology, 1(1), 46-57. doi:10.1016/0022-1694(63)90032-5

Balkema, A. A., & de Haan, L. (1974). Residual Life Time at Great Age. The Annals of Probability, 2(5). doi:10.1214/aop/1176996548

Beauchamp J. 2010. “Estimation d’une PMP et d’une CMP d’un bassin versant septentional en contexte de changements climatiques.” Ph.D. dissertation École de Technologie Supérieure Université du Québec.

Ben Alaya, M. A., Zwiers, F., & Zhang, X. (2018). Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis. Journal of Hydrometeorology, 19(4), 679-694. doi:10.1175/jhm-d-17-0110.1

Benson M. A. 1973. “Thoughts on the design of design floods. Floods and droughts.” In Proc. 2nd Int. Symp. in Hydrology 27–33. Fort Collins CO: Water Resources Publications.

Botero, B. A., & Francés, F. (2010). Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models. Hydrology and Earth System Sciences, 14(12), 2617-2628. doi:10.5194/hess-14-2617-2010

Canadian Dam Association. 2013. “Dam safety guidelines.” Accessed August 24 2020. https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx.

Casas, M. C., Rodríguez, R., Nieto, R., & Redaño, A. (2008). The Estimation of Probable Maximum Precipitation. Annals of the New York Academy of Sciences, 1146(1), 291-302. doi:10.1196/annals.1446.003

Casas, M. C., Rodríguez, R., Prohom, M., Gázquez, A., & Redaño, A. (2010). Estimation of the probable maximum precipitation in Barcelona (Spain). International Journal of Climatology, 31(9), 1322-1327. doi:10.1002/joc.2149

Casas-Castillo, M. C., Rodríguez-Solà, R., Navarro, X., Russo, B., Lastra, A., González, P., & Redaño, A. (2016). On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates. Theoretical and Applied Climatology, 131(1-2), 573-580. doi:10.1007/s00704-016-1998-0

Castellarin, A., Merz, R., & Blöschl, G. (2009). Probabilistic envelope curves for extreme rainfall events. Journal of Hydrology, 378(3-4), 263-271. doi:10.1016/j.jhydrol.2009.09.030

Chavan, S. R., & Srinivas, V. V. (2016). Regionalization based envelope curves for PMP estimation by Hershfield method. International Journal of Climatology, 37(10), 3767-3779. doi:10.1002/joc.4951

Chen, X., & Hossain, F. (2018). Understanding Model-Based Probable Maximum Precipitation Estimation as a Function of Location and Season from Atmospheric Reanalysis. Journal of Hydrometeorology, 19(2), 459-475. doi:10.1175/jhm-d-17-0170.1

Chen, X., & Hossain, F. (2019). Understanding Future Safety of Dams in a Changing Climate. Bulletin of the American Meteorological Society, 100(8), 1395-1404. doi:10.1175/bams-d-17-0150.1

Chow, V. T. (1951). A general formula for hydrologic frequency analysis. Transactions, American Geophysical Union, 32(2), 231. doi:10.1029/tr032i002p00231

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. doi:10.1007/978-1-4471-3675-0

COOKE, P. (1979). Statistical inference for bounds of random variables. Biometrika, 66(2), 367-374. doi:10.1093/biomet/66.2.367

Cooley, D. (2009). Extreme value analysis and the study of climate change. Climatic Change, 97(1-2), 77-83. doi:10.1007/s10584-009-9627-x

Dawdy, D. R., & Lettenmaier, D. P. (1987). Initiative for Risk‐Based Flood Design. Journal of Hydraulic Engineering, 113(8), 1041-1051. doi:10.1061/(asce)0733-9429(1987)113:8(1041)

Desa M., M. N., & Rakhecha, P. R. (2007). Probable maximum precipitation for 24-h duration over an equatorial region: Part 2-Johor, Malaysia. Atmospheric Research, 84(1), 84-90. doi:10.1016/j.atmosres.2006.06.005

Dettinger, M. (2011). Climate Change, Atmospheric Rivers, and Floods in California - A Multimodel Analysis of Storm Frequency and Magnitude Changes1. JAWRA Journal of the American Water Resources Association, 47(3), 514-523. doi:10.1111/j.1752-1688.2011.00546.x

Diaz A. J. K. Ishida M. L. Kavvas and M. L. Anderson. 2017. “Maximum precipitation estimation for five watersheds in the southern Sierra Nevada.” In Proc. 2017 World Environmental and Water Resources Congress 331–339. Reston VA: ASCE. https://doi.org/10.1061/9780784480618.032.

Douglas, E. M., & Barros, A. P. (2003). Probable Maximum Precipitation Estimation Using Multifractals: Application in the Eastern United States. Journal of Hydrometeorology, 4(6), 1012-1024. doi:10.1175/1525-7541(2003)004<1012:pmpeum>2.0.co;2

El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., & Bobée, B. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research, 43(3). doi:10.1029/2005wr004545

Elíasson, J. (1994). Statistical Estimates of PMP Values. Hydrology Research, 25(4), 301-312. doi:10.2166/nh.1994.0010

Elíasson, J. (1997). A statistical model for extreme precipitation. Water Resources Research, 33(3), 449-455. doi:10.1029/96wr03531

England, J. F., Jarrett, R. D., & Salas, J. D. (2003). Data-based comparisons of moments estimators using historical and paleoflood data. Journal of Hydrology, 278(1-4), 172-196. doi:10.1016/s0022-1694(03)00141-0

Fernandes, W., Naghettini, M., & Loschi, R. (2010). A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions. Stochastic Environmental Research and Risk Assessment, 24(8), 1127-1143. doi:10.1007/s00477-010-0365-4

Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24(2), 180-190. doi:10.1017/s0305004100015681

Fontaine, T. A., & Potter, K. W. (1989). Estimating Probabilities of Extreme Rainfalls. Journal of Hydraulic Engineering, 115(11), 1562-1575. doi:10.1061/(asce)0733-9429(1989)115:11(1562)

Foufoula-Georgiou, E. (1989). A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths. Water Resources Research, 25(5), 799-815. doi:10.1029/wr025i005p00799

Francés, F. (1998). Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stochastic Hydrology and Hydraulics, 12(4), 267-283. doi:10.1007/s004770050021

Frances, F., Salas, J. D., & Boes, D. C. (1994). Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models. Water Resources Research, 30(6), 1653-1664. doi:10.1029/94wr00154

Gao, M., Mo, D., & Wu, X. (2016). Nonstationary modeling of extreme precipitation in China. Atmospheric Research, 182, 1-9. doi:10.1016/j.atmosres.2016.07.014

García-Marín, A. P., Morbidelli, R., Saltalippi, C., Cifrodelli, M., Estévez, J., & Flammini, A. (2019). On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. Journal of Hydrology, 575, 1267-1279. doi:10.1016/j.jhydrol.2019.06.013

Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414-415, 40-48. doi:10.1016/j.jhydrol.2011.10.009

Groisman, P. Y., Knight, R. W., & Zolina, O. G. (2013). Recent Trends in Regional and Global Intense Precipitation Patterns. Climate Vulnerability, 25-55. doi:10.1016/b978-0-12-384703-4.00501-3

Gumbel, E. J. (1958). Statistics of Extremes. doi:10.7312/gumb92958

Hershfield, D. M. (1965). Method for Estimating Probable Maximum Rainfall. Journal - American Water Works Association, 57(8), 965-972. doi:10.1002/j.1551-8833.1965.tb01486.x

Hershfield D. M. 1977. “Some tools for hydrometeorologists.” In Proc. 2nd Conf. on Hydrometeorology. Boston: American Meteorological Society.

Hosking, J. R. M., & Wallis, J. R. (1997). Regional Frequency Analysis. doi:10.1017/cbo9780511529443

Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261. doi:10.1080/00401706.1985.10488049

Houghton, J. C. (1978). Birth of a parent: The Wakeby Distribution for modeling flood flows. Water Resources Research, 14(6), 1105-1109. doi:10.1029/wr014i006p01105

Hubert, P., Tessier, Y., Lovejoy, S., Schertzer, D., Schmitt, F., Ladoy, P., … Desurosne, I. (1993). Multifractals and extreme rainfall events. Geophysical Research Letters, 20(10), 931-934. doi:10.1029/93gl01245

Hundecha, Y., St-Hilaire, A., Ouarda, T. B. M. J., El Adlouni, S., & Gachon, P. (2008). A Nonstationary Extreme Value Analysis for the Assessment of Changes in Extreme Annual Wind Speed over the Gulf of St. Lawrence, Canada. Journal of Applied Meteorology and Climatology, 47(11), 2745-2759. doi:10.1175/2008jamc1665.1

Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Atmospheric Boundary Condition Shifting. Journal of Hydrologic Engineering, 20(4), 04014052. doi:10.1061/(asce)he.1943-5584.0001026

Ishida, K., Kavvas, M. L., Jang, S., Chen, Z. Q., Ohara, N., & Anderson, M. L. (2015). Physically Based Estimation of Maximum Precipitation over Three Watersheds in Northern California: Relative Humidity Maximization Method. Journal of Hydrologic Engineering, 20(10), 04015014. doi:10.1061/(asce)he.1943-5584.0001175

Ishida, K., Ohara, N., Kavvas, M. L., Chen, Z. Q., & Anderson, M. L. (2018). Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air. Journal of Hydrology, 556, 1050-1063. doi:10.1016/j.jhydrol.2016.10.008

Jakob D. R. Smalley J. Meighen B. Taylor and K. Xuereb. 2008. “Climate change and probable maximum precipitation.” In Proc. Water Down Under 109–120. Melbourne Australia: Engineers Australia Causal Productions.

Katz, R. W. (2012). Statistical Methods for Nonstationary Extremes. Water Science and Technology Library, 15-37. doi:10.1007/978-94-007-4479-0_2

Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25(8-12), 1287-1304. doi:10.1016/s0309-1708(02)00056-8

Kharin, V. V., Zwiers, F. W., Zhang, X., & Hegerl, G. C. (2007). Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. Journal of Climate, 20(8), 1419-1444. doi:10.1175/jcli4066.1

Kijko, A. (2004). Estimation of the Maximum Earthquake Magnitude, m max. Pure and Applied Geophysics, 161(8), 1655-1681. doi:10.1007/s00024-004-2531-4

Kim, I.-W., Oh, J., Woo, S., & Kripalani, R. H. (2018). Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Climate Dynamics, 52(3-4), 1317-1342. doi:10.1007/s00382-018-4193-4

Koutsoyiannis, D. (1999). A probabilistic view of hershfield’s method for estimating probable maximum precipitation. Water Resources Research, 35(4), 1313-1322. doi:10.1029/1999wr900002

Kundzewicz, Z. W., & Stakhiv, E. Z. (2010). Are climate models «ready for prime time» in water resources management applications, or is more research needed? Hydrological Sciences Journal, 55(7), 1085-1089. doi:10.1080/02626667.2010.513211

Kunkel, K. E., Karl, T. R., Easterling, D. R., Redmond, K., Young, J., Yin, X., & Hennon, P. (2013). Probable maximum precipitation and climate change. Geophysical Research Letters, 40(7), 1402-1408. doi:10.1002/grl.50334

Lan, P., Lin, B., Zhang, Y., & Chen, H. (2017). Probable Maximum Precipitation Estimation Using the Revised Km-Value Method in Hong Kong. Journal of Hydrologic Engineering, 22(8), 05017008. doi:10.1061/(asce)he.1943-5584.0001517

Langousis, A., Veneziano, D., Furcolo, P., & Lepore, C. (2009). Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons & Fractals, 39(3), 1182-1194. doi:10.1016/j.chaos.2007.06.004

Leclerc, M., & Ouarda, T. B. M. J. (2007). Non-stationary regional flood frequency analysis at ungauged sites. Journal of Hydrology, 343(3-4), 254-265. doi:10.1016/j.jhydrol.2007.06.021

Lee, J., Choi, J., Lee, O., Yoon, J., & Kim, S. (2017). Estimation of Probable Maximum Precipitation in Korea using a Regional Climate Model. Water, 9(4), 240. doi:10.3390/w9040240

Lenderink, G., & Attema, J. (2015). A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environmental Research Letters, 10(8), 085001. doi:10.1088/1748-9326/10/8/085001

Lepore, C., Veneziano, D., & Molini, A. (2015). Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophysical Research Letters, 42(1), 74-83. doi:10.1002/2014gl062247

López, J., & Francés, F. (2013). Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydrology and Earth System Sciences, 17(8), 3189-3203. doi:10.5194/hess-17-3189-2013

Loriaux, J. M., Lenderink, G., & Siebesma, A. P. (2016). Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. Journal of Geophysical Research: Atmospheres, 121(10), 5471-5487. doi:10.1002/2015jd024274

Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., & Benito, G. (2015). Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences, 19(6), 2561-2576. doi:10.5194/hess-19-2561-2015

Markonis, Y., Papalexiou, S. M., Martinkova, M., & Hanel, M. (2019). Assessment of Water Cycle Intensification Over Land using a Multisource Global Gridded Precipitation DataSet. Journal of Geophysical Research: Atmospheres, 124(21), 11175-11187. doi:10.1029/2019jd030855

Martins, E. S., & Stedinger, J. R. (2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, 36(3), 737-744. doi:10.1029/1999wr900330

Mejia G. and F. Villegas. 1979. “Maximum precipitation deviations in Colombia.” In Proc. 3rd Conf. on Hydrometeorology 74–76. Boston: America Meteorological Society.

Merz, R., & Blöschl, G. (2008). Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resources Research, 44(8). doi:10.1029/2007wr006744

Micovic, Z., Schaefer, M. G., & Taylor, G. H. (2015). Uncertainty analysis for Probable Maximum Precipitation estimates. Journal of Hydrology, 521, 360-373. doi:10.1016/j.jhydrol.2014.12.033

Mínguez, R., Méndez, F. J., Izaguirre, C., Menéndez, M., & Losada, I. J. (2010). Pseudo-optimal parameter selection of non-stationary generalized extreme value models for environmental variables. Environmental Modelling & Software, 25(12), 1592-1607. doi:10.1016/j.envsoft.2010.05.008

Nathan, R., Jordan, P., Scorah, M., Lang, S., Kuczera, G., Schaefer, M., & Weinmann, E. (2016). Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology, 543, 706-720. doi:10.1016/j.jhydrol.2016.10.044

Nathan R. J. and S. K. Merz. 2001. “Estimation of extreme hydrologic events in Australia: Current practice and research needs.” Paper 13 in Proc. Hydrologic research needs for dam safety 69–77. Washington DC: FEMA.

Nobilis, F., Haiden, T., & Kerschbaum, M. (1991). Statistical considerations concerning Probable Maximum Precipitation (PMP) in the Alpine Country of Austria. Theoretical and Applied Climatology, 44(2), 89-94. doi:10.1007/bf00867996

NWS (National Weather Service). 2015. “Regions covered by different NWS PMP documents (as of 2015) (map).” Accessed May 1 2020. https://www.nws.noaa.gov/oh/hdsc/studies/pmp.html.

Ohara, N., Kavvas, M. L., Anderson, M. L., Chen, Z. Q., & Ishida, K. (2017). Characterization of Extreme Storm Events Using a Numerical Model–Based Precipitation Maximization Procedure in the Feather, Yuba, and American River Watersheds in California. Journal of Hydrometeorology, 18(5), 1413-1423. doi:10.1175/jhm-d-15-0232.1

Ohara, N., Kavvas, M. L., Kure, S., Chen, Z. Q., Jang, S., & Tan, E. (2011). Physically Based Estimation of Maximum Precipitation over American River Watershed, California. Journal of Hydrologic Engineering, 16(4), 351-361. doi:10.1061/(asce)he.1943-5584.0000324

Papalexiou, S. M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency. Advances in Water Resources, 115, 234-252. doi:10.1016/j.advwatres.2018.02.013

Papalexiou, S. M., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). A Diagnostic Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the United States. Water Resources Research, 54(9), 6725-6738. doi:10.1029/2018wr022732

Papalexiou, S. M., & Koutsoyiannis, D. (2006). A probabilistic approach to the concept of Probable Maximum Precipitation. Advances in Geosciences, 7, 51-54. doi:10.5194/adgeo-7-51-2006

Papalexiou, S. M., & Koutsoyiannis, D. (2012). Entropy based derivation of probability distributions: A case study to daily rainfall. Advances in Water Resources, 45, 51-57. doi:10.1016/j.advwatres.2011.11.007

Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resources Research, 49(1), 187-201. doi:10.1029/2012wr012557

Papalexiou, S. M., & Koutsoyiannis, D. (2016). A global survey on the seasonal variation of the marginal distribution of daily precipitation. Advances in Water Resources, 94, 131-145. doi:10.1016/j.advwatres.2016.05.005

Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17(2), 851-862. doi:10.5194/hess-17-851-2013

Papalexiou, S. M., Markonis, Y., Lombardo, F., AghaKouchak, A., & Foufoula‐Georgiou, E. (2018). Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Stationary and Nonstationary Processes. Water Resources Research, 54(10), 7435-7458. doi:10.1029/2018wr022726

III, J. P. (1975). Statistical Inference Using Extreme Order Statistics. The Annals of Statistics, 3(1). doi:10.1214/aos/1176343003

Rakhecha, P. R., Deshpande, N. R., & Soman, M. K. (1992). Probable maximum precipitation for a 2-day duration over the Indian Peninsula. Theoretical and Applied Climatology, 45(4), 277-283. doi:10.1007/bf00865518

Rakhecha, P. R., & Soman, M. K. (1994). Estimation of probable maximum precipitation for a 2-day duration: Part 2 ? north Indian region. Theoretical and Applied Climatology, 49(2), 77-84. doi:10.1007/bf00868192

Rastogi, D., Kao, S., Ashfaq, M., Mei, R., Kabela, E. D., Gangrade, S., … Anantharaj, V. G. (2017). Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama‐Coosa‐Tallapoosa River Basin. Journal of Geophysical Research: Atmospheres, 122(9), 4808-4828. doi:10.1002/2016jd026001

Reed D. W. and E. J. Stewart. 1989. “Focus on rainfall growth estimation.” In Proc. 2nd National Hydrology Symp. Sheffield UK: British Hydrological Society.

Rezacova, D., Pesice, P., & Sokol, Z. (2005). An estimation of the probable maximum precipitation for river basins in the Czech Republic. Atmospheric Research, 77(1-4), 407-421. doi:10.1016/j.atmosres.2004.10.011

Rouhani, H., & Leconte, R. (2016). A novel method to estimate the maximization ratio of the Probable Maximum Precipitation (PMP) using regional climate model output. Water Resources Research, 52(9), 7347-7365. doi:10.1002/2016wr018603

Rouhani, H., & Leconte, R. (2020). Uncertainties of Precipitable Water Calculations for PMP Estimates in Current and Future Climates. Journal of Hydrologic Engineering, 25(3), 04019066. doi:10.1061/(asce)he.1943-5584.0001877

Rousseau, A. N., Klein, I. M., Freudiger, D., Gagnon, P., Frigon, A., & Ratté-Fortin, C. (2014). Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada. Journal of Hydrology, 519, 3094-3109. doi:10.1016/j.jhydrol.2014.10.053

Significance of Statistical Tests and Persistence in Hydrologic Processes. (2014). Handbook of Engineering Hydrology, 533-552. doi:10.1201/b16683-29

Salas, J. D., & Obeysekera, J. (2014). Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. Journal of Hydrologic Engineering, 19(3), 554-568. doi:10.1061/(asce)he.1943-5584.0000820

Salas J. D. and F. R. Salas. 2016. “Estimating the uncertainty of the PMP.” In Proc. 27th Latin-American Congress of Hydraulics. Santiago del Estero Argentina: Latin American Division of the International Association for Hydro-Environment Engineering and Research.

Serinaldi, F., & Kilsby, C. G. (2014). Rainfall extremes: Toward reconciliation after the battle of distributions. Water Resources Research, 50(1), 336-352. doi:10.1002/2013wr014211

Shepherd, T. G. (2014). Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geoscience, 7(10), 703-708. doi:10.1038/ngeo2253

Singh, A., Singh, V. P., & AR, B. (2018). Computation of probable maximum precipitation and its uncertainty. International Journal of Hydrology, 2(4). doi:10.15406/ijh.2018.02.00118

Singh, A. (2018). Risk analysis of probable maximum precipitation estimates. International Journal of Hydrology, 2(4). doi:10.15406/ijh.2018.02.00105

Slade, J. J. (1936). An Asymmetric Probability Function. Transactions of the American Society of Civil Engineers, 101(1), 35-61. doi:10.1061/taceat.0004779

Stedinger, J. R., & Cohn, T. A. (1986). Flood Frequency Analysis With Historical and Paleoflood Information. Water Resources Research, 22(5), 785-793. doi:10.1029/wr022i005p00785

Stratz, S. A., & Hossain, F. (2014). Probable Maximum Precipitation in a Changing Climate: Implications for Dam Design. Journal of Hydrologic Engineering, 19(12), 06014006. doi:10.1061/(asce)he.1943-5584.0001021

Su, C., & Chen, X. (2019). Covariates for nonstationary modeling of extreme precipitation in the Pearl River Basin, China. Atmospheric Research, 229, 224-239. doi:10.1016/j.atmosres.2019.06.017

Svensson, C., & Jones, D. A. (2010). Review of rainfall frequency estimation methods. Journal of Flood Risk Management, 3(4), 296-313. doi:10.1111/j.1753-318x.2010.01079.x

Takara K. and J. Loebis. 1996. “Frequency analysis introducing probable maximum hydrologic events: Preliminary studies in Japan and in Indonesia.” In Proc. Int. Symp. on Comparative Research on Hydrology and Water Resources in Southeast Asia and the Pacific 67–76. Yogyakarta Indonesia: Indonesian National Committee for International Hydrology Programme.

Takara K. and K. Tosa. 1999. “Storm and flood frequency analysis using PMP/PMF estimates.” In Proc. Int. Symp. on Floods and Droughts Nanjing China 7–17. Paris: UNESCO.

Toride, K., Cawthorne, D. L., Ishida, K., Kavvas, M. L., & Anderson, M. L. (2018). Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed. Science of The Total Environment, 626, 244-254. doi:10.1016/j.scitotenv.2018.01.004

Toride K. K. Ishida L. M. Kavvas and M. L. Anderson. 2017. “Maximum precipitation estimation over Shasta Dam watershed by means of atmospheric boundary condition shifting method.” In Proc. 2017 World Environmental and Water Resources Congress 340–346. Reston VA: ASCE. https://doi.org/10.1061/9780784480618.033.

Towler, E., Rajagopalan, B., Gilleland, E., Summers, R. S., Yates, D., & Katz, R. W. (2010). Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory. Water Resources Research, 46(11). doi:10.1029/2009wr008876

Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123-138. doi:10.3354/cr00953

Veneziano, D., Langousis, A., & Lepore, C. (2009). New asymptotic and preasymptotic results on rainfall maxima from multifractal theory. Water Resources Research, 45(11). doi:10.1029/2009wr008257

Veneziano, D., & Yoon, S. (2013). Rainfall extremes, excesses, and intensity-duration-frequency curves: A unified asymptotic framework and new nonasymptotic results based on multifractal measures. Water Resources Research, 49(7), 4320-4334. doi:10.1002/wrcr.20352

Viglione, A., Castellarin, A., Rogger, M., Merz, R., & Blöschl, G. (2012). Extreme rainstorms: Comparing regional envelope curves to stochastically generated events. Water Resources Research, 48(1). doi:10.1029/2011wr010515

Villarini, G., Serinaldi, F., Smith, J. A., & Krajewski, W. F. (2009). On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 45(8). doi:10.1029/2008wr007645

Villarini, G., Smith, J. A., & Vecchi, G. A. (2013). Changing Frequency of Heavy Rainfall over the Central United States. Journal of Climate, 26(1), 351-357. doi:10.1175/jcli-d-12-00043.1

Vogel, R. M., Matalas, N. C., England, J. F., & Castellarin, A. (2007). An assessment of exceedance probabilities of envelope curves. Water Resources Research, 43(7). doi:10.1029/2006wr005586

Vogel, R. M., Yaindl, C., & Walter, M. (2011). Nonstationarity: Flood Magnification and Recurrence Reduction Factors in the United States1. JAWRA Journal of the American Water Resources Association, 47(3), 464-474. doi:10.1111/j.1752-1688.2011.00541.x

Wangwongwiroj, N., & Khemngoen, C. (2019). Probable maximum precipitation in tropical zone (Thailand) as estimated by generalized method and statistical method. International Journal of Climatology, 39(13), 4953-4966. doi:10.1002/joc.6119

Wilson, P. S., & Toumi, R. (2005). A fundamental probability distribution for heavy rainfall. Geophysical Research Letters, 32(14), n/a-n/a. doi:10.1029/2005gl022465

Yang, L., & Smith, J. (2018). Sensitivity of Extreme Rainfall to Atmospheric Moisture Content in the Arid/Semiarid Southwestern United States: Implications for Probable Maximum Precipitation Estimates. Journal of Geophysical Research: Atmospheres, 123(3), 1638-1656. doi:10.1002/2017jd027850

Yilmaz, A. G., Imteaz, M. A., & Perera, B. J. C. (2016). Investigation of non-stationarity of extreme rainfalls and spatial variability of rainfall intensity-frequency-duration relationships: a case study of Victoria, Australia. International Journal of Climatology, 37(1), 430-442. doi:10.1002/joc.4716

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem