Dehghan, M., & Hajarian, M. (2009). Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. Journal of Computational and Applied Mathematics, 231(1), 67-81. doi:10.1016/j.cam.2009.01.021
Dehghan, M., & Hajarian, M. (2010). Computing matrix functions using mixed interpolation methods. Mathematical and Computer Modelling, 52(5-6), 826-836. doi:10.1016/j.mcm.2010.05.013
Kazem, S., & Dehghan, M. (2017). Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 34(2), 626-660. doi:10.1002/num.22218
[+]
Dehghan, M., & Hajarian, M. (2009). Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. Journal of Computational and Applied Mathematics, 231(1), 67-81. doi:10.1016/j.cam.2009.01.021
Dehghan, M., & Hajarian, M. (2010). Computing matrix functions using mixed interpolation methods. Mathematical and Computer Modelling, 52(5-6), 826-836. doi:10.1016/j.mcm.2010.05.013
Kazem, S., & Dehghan, M. (2017). Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 34(2), 626-660. doi:10.1002/num.22218
Kazem, S., & Dehghan, M. (2018). Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Engineering with Computers, 35(1), 229-241. doi:10.1007/s00366-018-0595-5
Paterson, M. S., & Stockmeyer, L. J. (1973). On the Number of Nonscalar Multiplications Necessary to Evaluate Polynomials. SIAM Journal on Computing, 2(1), 60-66. doi:10.1137/0202007
Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation, 217(14), 6451-6463. doi:10.1016/j.amc.2011.01.004
Higham, N. J. (2008). Functions of Matrices. doi:10.1137/1.9780898717778
Sastre, J., Ibáñez, J., Defez, E., & Ruiz, P. (2011). Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54(7-8), 1835-1840. doi:10.1016/j.mcm.2010.12.049
Serbin, S. M., & Blalock, S. A. (1980). An Algorithm for Computing the Matrix Cosine. SIAM Journal on Scientific and Statistical Computing, 1(2), 198-204. doi:10.1137/0901013
Ruiz, P., Sastre, J., Ibáñez, J., & Defez, E. (2016). High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 291, 370-379. doi:10.1016/j.cam.2015.04.001
Higham, N. J. (1988). FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation. ACM Transactions on Mathematical Software, 14(4), 381-396. doi:10.1145/50063.214386
[-]