- -

Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case

Mostrar el registro completo del ítem

Marcén, AC.; Lapeña, R.; Pastor López, O.; Cetina, C. (2020). Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case. Journal of Systems and Software. 163:1-24. https://doi.org/10.1016/j.jss.2020.110519

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170577

Ficheros en el ítem

Metadatos del ítem

Título: Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case
Autor: Marcén, Ana C. Lapeña, Raúl Pastor López, Oscar Cetina, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Traceability Link Recovery (TLR) has been a topic of interest for many years within the software engineering community. In recent years, TLR has been attracting more attention, becoming the subject of both fundamental ...[+]
Palabras clave: Traceability link recovery , Requirements engineering , Models , Evolutionary algorithm , Learning to rank
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Systems and Software. (issn: 0164-1212 )
DOI: 10.1016/j.jss.2020.110519
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jss.2020.110519
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096411-B-I00/ES/ASISTENTES EVOLUTIVOS INTELIGENTES PARA INICIAR LINEAS DE PRODUCTO SOFTWARE/
info:eu-repo/grantAgreement/MINECO//TIN2016-80811-P/ES/UN METODO DE PRODUCCION DE SOFTWARE DIRIGIDO POR MODELOS PARA EL DESARROLLO DE APLICACIONES BIG DATA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F176/ES/GISPRO-GENOMIC INFORMATION SYSTEMS PRODUCTION/
info:eu-repo/grantAgreement/GVA//ACIF%2F2018%2F171/
Agradecimientos:
This work has been developed with the financial support of the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ALPS RT12018-096411-B-100, ACIF/2018/171 and ...[+]
Tipo: Artículo

References

Abeles, P., 2017. Efficient Java Matrix Library. [Online; accessed 12-April-2017], http://ejml.org/.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering traceability links between code and documentation. IEEE Transactions on Software Engineering, 28(10), 970-983. doi:10.1109/tse.2002.1041053

Antoniol, G., Cleland-Huang, J., Hayes, J. H., Vierhauser, M., 2017. Grand Challenges of Traceability: The Next Ten Years. arXiv:1710.03129. [+]
Abeles, P., 2017. Efficient Java Matrix Library. [Online; accessed 12-April-2017], http://ejml.org/.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., & Merlo, E. (2002). Recovering traceability links between code and documentation. IEEE Transactions on Software Engineering, 28(10), 970-983. doi:10.1109/tse.2002.1041053

Antoniol, G., Cleland-Huang, J., Hayes, J. H., Vierhauser, M., 2017. Grand Challenges of Traceability: The Next Ten Years. arXiv:1710.03129.

Arcuri, A., & Briand, L. (2012). A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Software Testing, Verification and Reliability, 24(3), 219-250. doi:10.1002/stvr.1486

Arcuri, A., & Fraser, G. (2013). Parameter tuning or default values? An empirical investigation in search-based software engineering. Empirical Software Engineering, 18(3), 594-623. doi:10.1007/s10664-013-9249-9

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., & Popp, J. (2013). Sample size planning for classification models. Analytica Chimica Acta, 760, 25-33. doi:10.1016/j.aca.2012.11.007

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. doi:10.1109/72.279181

Cetina, C., Font, J., Arcega, L., & Pérez, F. (2017). Improving feature location in long-living model-based product families designed with sustainability goals. Journal of Systems and Software, 134, 261-278. doi:10.1016/j.jss.2017.09.022

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28. doi:10.1016/j.compeleceng.2013.11.024

Dang, V., 2013. The Lemur Project - Wiki - RankLib. [Online; accessed April-2017], http://sourceforge.net/p/lemur/wiki/RankLib/.

Davis, L., 1991. Handbook of Genetic Algorithms.

Dyer, D., 2016. The Watchmaker Framework for Evolutionary Computation (Evolutionary/Genetic Algorithms for Java). [Online; accessed 7-April-2016], http://watchmaker.uncommons.org/.

Falessi, D., Cantone, G., & Canfora, G. (2013). Empirical Principles and an Industrial Case Study in Retrieving Equivalent Requirements via Natural Language Processing Techniques. IEEE Transactions on Software Engineering, 39(1), 18-44. doi:10.1109/tse.2011.122

Frakes, W. B., Baeza-Yates, R., 1992. Information Retrieval: Data Structures and Algorithms.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044-2064. doi:10.1016/j.ins.2009.12.010

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199(2), 142-152. doi:10.1016/j.ecolmodel.2006.05.017

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. doi:10.1016/0893-6080(89)90020-8

Joachims, T., 1999. Svmlight: Support vector machine. SVM-Light Support Vector Machine http://svmlight. joachims. org/, University of Dortmund 19 (4).

Kıraç, M. F., Aktemur, B., & Sözer, H. (2018). VISOR: A fast image processing pipeline with scaling and translation invariance for test oracle automation of visual output systems. Journal of Systems and Software, 136, 266-277. doi:10.1016/j.jss.2017.06.023

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2-3), 259-284. doi:10.1080/01638539809545028

Lapeña, R., Font, J., Pastor, Ó., & Cetina, C. (2017). Analyzing the impact of natural language processing over feature location in models. ACM SIGPLAN Notices, 52(12), 63-76. doi:10.1145/3170492.3136052

Lucia, A. D., Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability links in software artifact management systems using information retrieval methods. ACM Transactions on Software Engineering and Methodology, 16(4), 13. doi:10.1145/1276933.1276934

Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A., 2014. Deep captioning with multimodal recurrent neural networks (M-RNN). arXiv:1412.6632.

Meziane, F., Athanasakis, N., & Ananiadou, S. (2007). Generating Natural Language specifications from UML class diagrams. Requirements Engineering, 13(1), 1-18. doi:10.1007/s00766-007-0054-0

Parizi, R. M., Lee, S. P., & Dabbagh, M. (2014). Achievements and Challenges in State-of-the-Art Software Traceability Between Test and Code Artifacts. IEEE Transactions on Reliability, 63(4), 913-926. doi:10.1109/tr.2014.2338254

Piper, J. (1992). Variability and bias in experimentally measured classifier error rates. Pattern Recognition Letters, 13(10), 685-692. doi:10.1016/0167-8655(92)90097-j

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2007). Feature Location Using Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. IEEE Transactions on Software Engineering, 33(6), 420-432. doi:10.1109/tse.2007.1016

Rempel, P., & Mader, P. (2017). Preventing Defects: The Impact of Requirements Traceability Completeness on Software Quality. IEEE Transactions on Software Engineering, 43(8), 777-797. doi:10.1109/tse.2016.2622264

Rus, I., & Lindvall, M. (2002). Knowledge management in software engineering. IEEE Software, 19(3), 26-38. doi:10.1109/ms.2002.1003450

Salton, G., McGill, M. J., 1986. Introduction to modern information retrieval.

Shabtai, A., Moskovitch, R., Elovici, Y., & Glezer, C. (2009). Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey. Information Security Technical Report, 14(1), 16-29. doi:10.1016/j.istr.2009.03.003

Song, Q., Jia, Z., Shepperd, M., Ying, S., & Liu, J. (2011). A General Software Defect-Proneness Prediction Framework. IEEE Transactions on Software Engineering, 37(3), 356-370. doi:10.1109/tse.2010.90

SPANOUDAKIS, G., & ZISMAN, A. (2005). SOFTWARE TRACEABILITY: A ROADMAP. Handbook Of Software Engineering And Knowledge Engineering, 395-428. doi:10.1142/9789812775245_0014

Spanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based generation of requirements traceability relations. Journal of Systems and Software, 72(2), 105-127. doi:10.1016/s0164-1212(03)00242-5

Sundaram, S. K., Hayes, J. H., Dekhtyar, A., & Holbrook, E. A. (2010). Assessing traceability of software engineering artifacts. Requirements Engineering, 15(3), 313-335. doi:10.1007/s00766-009-0096-6

The Stanford Natural Language Processing Group (2017). https://nlp.stanford.edu/software/tagger.shtml. [Online; accessed 18-May-2017].

VANNIEL, T., MCVICAR, T., & DATT, B. (2005). On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sensing of Environment, 98(4), 468-480. doi:10.1016/j.rse.2005.08.011

Walczak, S., & Cerpa, N. (1999). Heuristic principles for the design of artificial neural networks. Information and Software Technology, 41(2), 107-117. doi:10.1016/s0950-5849(98)00116-5

Jialei Wang, Peilin Zhao, Hoi, S. C. H., & Rong Jin. (2014). Online Feature Selection and Its Applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698-710. doi:10.1109/tkde.2013.32

Watkins, R., & Neal, M. (1994). Why and how of requirements tracing. IEEE Software, 11(4), 104-106. doi:10.1109/52.300100

Winkler, S., & von Pilgrim, J. (2009). A survey of traceability in requirements engineering and model-driven development. Software & Systems Modeling, 9(4), 529-565. doi:10.1007/s10270-009-0145-0

Zhang, Z., Chen, L., Tian, P., Su, J.,. Source localization in an ocean waveguide using supervised machine learning. Computing 11, 5.

Zhou, Z.-H., Feng, J., 2017. Deep Forest: Towards an Alternative to Deep Neural Networks. arXiv:1702.08835.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem