- -

Programming and symbolic computation in Maude

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Programming and symbolic computation in Maude

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Durán, Francisco es_ES
dc.contributor.author Eker, Steven es_ES
dc.contributor.author Escobar Román, Santiago es_ES
dc.contributor.author NARCISO MARTÍ OLIET es_ES
dc.contributor.author José Meseguer es_ES
dc.contributor.author Rubén Rubio es_ES
dc.contributor.author Talcott, Carolyn es_ES
dc.date.accessioned 2021-07-29T03:30:53Z
dc.date.available 2021-07-29T03:30:53Z
dc.date.issued 2020-01 es_ES
dc.identifier.issn 2352-2208 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170775
dc.description.abstract [EN] Rewriting logic is both a flexible semantic framework within which widely different concurrent systems can be naturally specified and a logical framework in which widely different logics can be specified. Maude programs are exactly rewrite theories. Maude has also a formal environment of verification tools. Symbolic computation is a powerful technique for reasoning about the correctness of concurrent systems and for increasing the power of formal tools. We present several new symbolic features of Maude that enhance formal reasoning about Maude programs and the effectiveness of formal tools. They include: (i) very general unification modulo user-definable equational theories, and (ii) symbolic reachability analysis of concurrent systems using narrowing. The paper does not focus just on symbolic features: it also describes several other new Maude features, including: (iii) Maude's strategy language for controlling rewriting, and (iv) external objects that allow flexible interaction of Maude object-based concurrent systems with the external world. In particular, meta-interpreters are external objects encapsulating Maude interpreters that can interact with many other objects. To make the paper self-contained and give a reasonably complete language overview, we also review the basic Maude features for equational rewriting and rewriting with rules, Maude programming of concurrent object systems, and reflection. Furthermore, we include many examples illustrating all the Maude notions and features described in the paper. es_ES
dc.description.sponsorship Duran has been partially supported by MINECO/FEDER project TIN2014-52034-R. Escobar has been partially supported by the EU (FEDER) and the MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETE0/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. MartiOliet and Rubio have been partially supported by MCIU Spanish project TRACES (TIN2015-67522-C3-3-R). Rubio has also been partially supported by a MCIU grant FPU17/02319. Meseguer and Talcott have been partially supported by NRL Grant N00173 -17-1-G002. Talcott has also been partially supported by ONR Grant N00014-15-1-2202. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Logical and Algebraic Methods in Programming es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Maude and rewriting logic es_ES
dc.subject Strategies es_ES
dc.subject External objects es_ES
dc.subject Unification and narrowing es_ES
dc.subject Symbolic model checking es_ES
dc.subject Meta-interpreters es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Programming and symbolic computation in Maude es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jlamp.2019.100497 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-52034-R/ES/UN MARCO DIRIGIDO POR MODELOS PARA EL DISEÑO E INTEGRACION DE SISTEMAS DE GESTION DE INFRAESTRUCTURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AFOSR//FA9550-17-1-0266/US/Advanced symbolic methods for the cryptographic protocol analyzer Maude-NPA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU17%2F02319/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-15-1-2202/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRL//N00173-17-1-G002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-67522-C3-3-R/ES/TECNOLOGIAS Y HERRAMIENTAS PARA EL DESARROLLO DE SOFTWARE CONSCIENTE DE LOS RECURSOS, CORRECTO Y EFICIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AFOSR//FA9550-17-1-0286/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098/ES/DeepTrust: Deep Logic Technology for Software Trustworthiness/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F013/ES/SmartLogic: Logic Technologies for Software Security and Performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Durán, F.; Eker, S.; Escobar Román, S.; NARCISO MARTÍ OLIET; José Meseguer; Rubén Rubio; Talcott, C. (2020). Programming and symbolic computation in Maude. Journal of Logical and Algebraic Methods in Programming. 110:1-58. https://doi.org/10.1016/j.jlamp.2019.100497 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jlamp.2019.100497 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 58 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.relation.pasarela S\401108 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder U.S. Naval Research Laboratory es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder AIR FORCE OFFICE OF SCIENTIFIC RESEARCH es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Alpuente, M., Escobar, S., Espert, J., & Meseguer, J. (2014). A modular order-sorted equational generalization algorithm. Information and Computation, 235, 98-136. doi:10.1016/j.ic.2014.01.006 es_ES
dc.description.references K. Bae, J. Meseguer, Predicate abstraction of rewrite theories, in: [36], 2014, pp. 61–76. es_ES
dc.description.references Bae, K., & Meseguer, J. (2015). Model checking linear temporal logic of rewriting formulas under localized fairness. Science of Computer Programming, 99, 193-234. doi:10.1016/j.scico.2014.02.006 es_ES
dc.description.references Bae, K., Meseguer, J., & Ölveczky, P. C. (2014). Formal patterns for multirate distributed real-time systems. Science of Computer Programming, 91, 3-44. doi:10.1016/j.scico.2013.09.010 es_ES
dc.description.references P. Borovanský, C. Kirchner, H. Kirchner, P.E. Moreau, C. Ringeissen, An overview of ELAN, in: [77], 1998, pp. 55–70. es_ES
dc.description.references Bouhoula, A., Jouannaud, J.-P., & Meseguer, J. (2000). Specification and proof in membership equational logic. Theoretical Computer Science, 236(1-2), 35-132. doi:10.1016/s0304-3975(99)00206-6 es_ES
dc.description.references Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). Stratego/XT 0.17. A language and toolset for program transformation. Science of Computer Programming, 72(1-2), 52-70. doi:10.1016/j.scico.2007.11.003 es_ES
dc.description.references Bruni, R., & Meseguer, J. (2006). Semantic foundations for generalized rewrite theories. Theoretical Computer Science, 360(1-3), 386-414. doi:10.1016/j.tcs.2006.04.012 es_ES
dc.description.references M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, C.L. Talcott, Two decades of Maude, in: [86], 2015, pp. 232–254. es_ES
dc.description.references Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285(2), 187-243. doi:10.1016/s0304-3975(01)00359-0 es_ES
dc.description.references Clavel, M., & Meseguer, J. (2002). Reflection in conditional rewriting logic. Theoretical Computer Science, 285(2), 245-288. doi:10.1016/s0304-3975(01)00360-7 es_ES
dc.description.references F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, C.L. Talcott, Associative unification and symbolic reasoning modulo associativity in Maude, in: [121], 2018, pp. 98–114. es_ES
dc.description.references Durán, F., Lucas, S., Marché, C., Meseguer, J., & Urbain, X. (2008). Proving operational termination of membership equational programs. Higher-Order and Symbolic Computation, 21(1-2), 59-88. doi:10.1007/s10990-008-9028-2 es_ES
dc.description.references F. Durán, J. Meseguer, An extensible module algebra for Maude, in: [77], 1998, pp. 174–195. es_ES
dc.description.references Durán, F., & Meseguer, J. (2003). Structured theories and institutions. Theoretical Computer Science, 309(1-3), 357-380. doi:10.1016/s0304-3975(03)00312-8 es_ES
dc.description.references Durán, F., & Meseguer, J. (2007). Maude’s module algebra. Science of Computer Programming, 66(2), 125-153. doi:10.1016/j.scico.2006.07.002 es_ES
dc.description.references Durán, F., & Meseguer, J. (2012). On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. The Journal of Logic and Algebraic Programming, 81(7-8), 816-850. doi:10.1016/j.jlap.2011.12.004 es_ES
dc.description.references F. Durán, P.C. Ölveczky, A guide to extending Full Maude illustrated with the implementation of Real-Time Maude, in: [116], 2009, pp. 83–102. es_ES
dc.description.references S. Escobar, Multi-paradigm programming in Maude, in: [121], 2018, pp. 26–44. es_ES
dc.description.references Escobar, S., Meadows, C., Meseguer, J., & Santiago, S. (2014). State space reduction in the Maude-NRL Protocol Analyzer. Information and Computation, 238, 157-186. doi:10.1016/j.ic.2014.07.007 es_ES
dc.description.references Escobar, S., Sasse, R., & Meseguer, J. (2012). Folding variant narrowing and optimal variant termination. The Journal of Logic and Algebraic Programming, 81(7-8), 898-928. doi:10.1016/j.jlap.2012.01.002 es_ES
dc.description.references H. Garavel, M. Tabikh, I. Arrada, Benchmarking implementations of term rewriting and pattern matching in algebraic, functional, and object-oriented languages – the 4th rewrite engines competition, in: [121], 2018, pp. 1–25. es_ES
dc.description.references Goguen, J. A., & Burstall, R. M. (1992). Institutions: abstract model theory for specification and programming. Journal of the ACM, 39(1), 95-146. doi:10.1145/147508.147524 es_ES
dc.description.references Goguen, J. A., & Meseguer, J. (1984). Equality, types, modules, and (why not?) generics for logic programming. The Journal of Logic Programming, 1(2), 179-210. doi:10.1016/0743-1066(84)90004-9 es_ES
dc.description.references Goguen, J. A., & Meseguer, J. (1992). Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2), 217-273. doi:10.1016/0304-3975(92)90302-v es_ES
dc.description.references R. Gutiérrez, J. Meseguer, Variant-based decidable satisfiability in initial algebras with predicates, in: [61], 2018, pp. 306–322. es_ES
dc.description.references Gutiérrez, R., Meseguer, J., & Rocha, C. (2015). Order-sorted equality enrichments modulo axioms. Science of Computer Programming, 99, 235-261. doi:10.1016/j.scico.2014.07.003 es_ES
dc.description.references Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic, 16(1), 14-21. doi:10.2307/2268661 es_ES
dc.description.references Katelman, M., Keller, S., & Meseguer, J. (2012). Rewriting semantics of production rule sets. The Journal of Logic and Algebraic Programming, 81(7-8), 929-956. doi:10.1016/j.jlap.2012.06.002 es_ES
dc.description.references Kowalski, R. (1979). Algorithm = logic + control. Communications of the ACM, 22(7), 424-436. doi:10.1145/359131.359136 es_ES
dc.description.references Lucanu, D., Rusu, V., & Arusoaie, A. (2017). A generic framework for symbolic execution: A coinductive approach. Journal of Symbolic Computation, 80, 125-163. doi:10.1016/j.jsc.2016.07.012 es_ES
dc.description.references D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak, Verifying reachability-logic properties on rewriting-logic specifications, in: [86], 2015, pp. 451–474. es_ES
dc.description.references Lucas, S., & Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming, 85(1), 67-97. doi:10.1016/j.jlamp.2015.06.001 es_ES
dc.description.references N. Martí-Oliet, J. Meseguer, A. Verdejo, A rewriting semantics for Maude strategies, in: [116], 2009, pp. 227–247. es_ES
dc.description.references Martí-Oliet, N., Palomino, M., & Verdejo, A. (2007). Strategies and simulations in a semantic framework. Journal of Algorithms, 62(3-4), 95-116. doi:10.1016/j.jalgor.2007.04.002 es_ES
dc.description.references Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1), 73-155. doi:10.1016/0304-3975(92)90182-f es_ES
dc.description.references Meseguer, J. (2012). Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming, 81(7-8), 721-781. doi:10.1016/j.jlap.2012.06.003 es_ES
dc.description.references Meseguer, J. (2017). Strict coherence of conditional rewriting modulo axioms. Theoretical Computer Science, 672, 1-35. doi:10.1016/j.tcs.2016.12.026 es_ES
dc.description.references J. Meseguer, Generalized rewrite theories and coherence completion, in: [121], 2018, pp. 164–183. es_ES
dc.description.references Meseguer, J. (2018). Variant-based satisfiability in initial algebras. Science of Computer Programming, 154, 3-41. doi:10.1016/j.scico.2017.09.001 es_ES
dc.description.references Meseguer, J., Goguen, J. A., & Smolka, G. (1989). Order-sorted unification. Journal of Symbolic Computation, 8(4), 383-413. doi:10.1016/s0747-7171(89)80036-7 es_ES
dc.description.references Meseguer, J., & Ölveczky, P. C. (2012). Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theoretical Computer Science, 451, 1-37. doi:10.1016/j.tcs.2012.05.040 es_ES
dc.description.references Meseguer, J., Palomino, M., & Martí-Oliet, N. (2008). Equational abstractions. Theoretical Computer Science, 403(2-3), 239-264. doi:10.1016/j.tcs.2008.04.040 es_ES
dc.description.references Meseguer, J., & Roşu, G. (2007). The rewriting logic semantics project. Theoretical Computer Science, 373(3), 213-237. doi:10.1016/j.tcs.2006.12.018 es_ES
dc.description.references Meseguer, J., & Roşu, G. (2013). The rewriting logic semantics project: A progress report. Information and Computation, 231, 38-69. doi:10.1016/j.ic.2013.08.004 es_ES
dc.description.references Meseguer, J., & Skeirik, S. (2017). Equational formulas and pattern operations in initial order-sorted algebras. Formal Aspects of Computing, 29(3), 423-452. doi:10.1007/s00165-017-0415-5 es_ES
dc.description.references Meseguer, J., & Thati, P. (2007). Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation, 20(1-2), 123-160. doi:10.1007/s10990-007-9000-6 es_ES
dc.description.references C. Olarte, E. Pimentel, C. Rocha, Proving structural properties of sequent systems in rewriting logic, in: [121], 2018, pp. 115–135. es_ES
dc.description.references Ölveczky, P. C., & Meseguer, J. (2007). Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation, 20(1-2), 161-196. doi:10.1007/s10990-007-9001-5 es_ES
dc.description.references Ölveczky, P. C., & Thorvaldsen, S. (2009). Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theoretical Computer Science, 410(2-3), 254-280. doi:10.1016/j.tcs.2008.09.022 es_ES
dc.description.references Rocha, C., Meseguer, J., & Muñoz, C. (2017). Rewriting modulo SMT and open system analysis. Journal of Logical and Algebraic Methods in Programming, 86(1), 269-297. doi:10.1016/j.jlamp.2016.10.001 es_ES
dc.description.references Şerbănuţă, T. F., Roşu, G., & Meseguer, J. (2009). A rewriting logic approach to operational semantics. Information and Computation, 207(2), 305-340. doi:10.1016/j.ic.2008.03.026 es_ES
dc.description.references Skeirik, S., & Meseguer, J. (2018). Metalevel algorithms for variant satisfiability. Journal of Logical and Algebraic Methods in Programming, 96, 81-110. doi:10.1016/j.jlamp.2017.12.006 es_ES
dc.description.references S. Skeirik, A. Ştefănescu, J. Meseguer, A constructor-based reachability logic for rewrite theories, in: [61], 2018, pp. 201–217. es_ES
dc.description.references Strachey, C. (2000). Higher-Order and Symbolic Computation, 13(1/2), 11-49. doi:10.1023/a:1010000313106 es_ES
dc.description.references A. Ştefănescu, S. Ciobâcă, R. Mereuta, B.M. Moore, T. Serbanuta, G. Roşu, All-path reachability logic, in: [36], 2014, pp. 425–440. es_ES
dc.description.references Tushkanova, E., Giorgetti, A., Ringeissen, C., & Kouchnarenko, O. (2015). A rule-based system for automatic decidability and combinability. Science of Computer Programming, 99, 3-23. doi:10.1016/j.scico.2014.02.005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem