- -

A comparison of TOPSIS, grey relational analysis and COPRAS methods for machine selection problem in the food industry of Turkey

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

A comparison of TOPSIS, grey relational analysis and COPRAS methods for machine selection problem in the food industry of Turkey

Show full item record

Özcan, S.; Çelik, AK. (2021). A comparison of TOPSIS, grey relational analysis and COPRAS methods for machine selection problem in the food industry of Turkey. International Journal of Production Management and Engineering. 9(2):81-92. https://doi.org/10.4995/ijpme.2021.14734

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/170824

Files in this item

Item Metadata

Title: A comparison of TOPSIS, grey relational analysis and COPRAS methods for machine selection problem in the food industry of Turkey
Author: Özcan, Sami Çelik, Ali Kemal
Issued date:
[EN] The paper aims to compare the results of the selection/choice of cream separators by using multi-criteria decision-making methods in an integrated manner for an enterprise with a dairy processing capacity of 80 to 100 ...[+]
Subjects: Machine selection , Decision making , TOPSIS , Grey relational analysis , COPRAS
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
International Journal of Production Management and Engineering. (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2021.14734
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/ijpme.2021.14734
Type: Artículo




Ahmed, M., Qureshi, M.N., Mallick, J., Kahla, N.B. (2019). Selection of sustainable supplementary concrete materials using OSM-AHP-TOPSIS approach. Advances in Materials Science and Engineering, 2019, 1-12. https://doi.org/10.1155/2019/2850480

Aloini, D., Dulmin, R., Mininno, V. (2014). A peer IF-TOPSIS based decision support system for packaging machine selection. Expert Systems with Applications, 41(5), 2157-2165

https://doi.org/10.1016/j.eswa.2013.09.014 [+]
Ahmed, M., Qureshi, M.N., Mallick, J., Kahla, N.B. (2019). Selection of sustainable supplementary concrete materials using OSM-AHP-TOPSIS approach. Advances in Materials Science and Engineering, 2019, 1-12. https://doi.org/10.1155/2019/2850480

Aloini, D., Dulmin, R., Mininno, V. (2014). A peer IF-TOPSIS based decision support system for packaging machine selection. Expert Systems with Applications, 41(5), 2157-2165


Alpay, S., Ihpar, M. (2018). Equipment selection based on two different fuzzy multi criteria decision making methods: Fuzzy TOPSIS and fuzzy VIKOR. Open Geosciences, 10(1), 661-677. https://doi.org/10.1515/geo-2018-0053

Antucheviciene, J., Zavadskas, E.K., Zakarevičius, A. (2012). Ranking redevelopment decisions of derelict buildings and analysis of ranking results. Economic Computation and Economic Cybernetics Studies and Research, 46(2), 37-63. Retrieved June 08, 2020 from http://www.ecocyb.ase.ro/22012/Edmundas%20ZAVADSKAS%20_DA_.pdf

Ayağ, Z., Özdemir, R.G. (2006). A fuzzy AHP approach to evaluating machine tool alternatives. Journal of Intelligent Manufacturing, 17(2), 179-190. https://doi.org/10.1007/s10845-005-6635-1

Belton, V., Stewart, T.J. (2002). Multiple criteria decision analysis: An integrated approach. Berlin: Kluwer Academic Publishers.


Camcı, A., Temur, G.T., Beşkese, A. (2018). CNC router selection for SMEs in woodwork manufacturing using hesitant fuzzy AHP method. Journal of Enterprise Information Management, 31(4), 529-549. https://doi.org/10.1108/JEIM-01-2018-0017

Çakır, S. (2018). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 29(7), 1433-1445. https://doi.org/10.1007/s10845-015-1189-3

Çelen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: With an application to Turkish deposit banking market. Informatica, 25(2), 185-208. https://doi.org/10.15388/Informatica.2014.10

Chandan, R.C. (2008). Dairy Processing and Quality Assurance: An Overview. Ramesh C. Chandan, Arun Kilara, Nagendra Shah (Eds.), In Dairy Processing and Quality Assurance (pp. 1-40). New Jersey: Wiley-Blackwell. https://doi.org/10.1002/9780813804033

Chatterjee, P., Chakraborty, S. (2014). Investigating the effect of normalization norms in flexible manfacturing sytem selection using Multi-Criteria Decision-Making methods. Journal of Engineering Science and Technology Review, 7(3), 141-150. https://doi.org/10.25103/jestr.073.23

Clarke, M.P., Denby, B., Schofield, D. (1990). Decision making tools for surface mine equipment selection. Mining Science and Technology, 10(3), 323-335. https://doi.org/10.1016/0167-9031(90)90530-6

Datta, S., Sahu, N., Mahapatra, S. (2013). Robot selection based on grey-MULTIMOORA approach. Grey Systems: Theory and Application, 3(2), 201-232. https://doi.org/10.1108/GS-05-2013-0008

Deng, H., Yeh, C.H., Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research, 27(10), 963-973. https://doi.org/10.1016/S0305-0548(99)00069-6

Doğan, M., Aslan, D., Aktar, T., Sarac, M.G. (2016). A methodology to evaluate the sensory properties of instant hot chocolate beverage with different fat contents: multi-criteria decision-making techniques approach. European Food Research and Technology, 242(6), 953-966. https://doi.org/10.1007/s00217-015-2602-z

Ertuğrul, İ., Güneş, M. (2007). Fuzzy multi-criteria decision making method for machine selection. P. Melin, O. Castillo, E.G. Ramirez, J. Kacprzyk and W. Pedrycz (Eds.), In Analysis and Design of Intelligent Systems Using Soft Computing Techniques (pp. 638-648). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-540-72432-2_65

Ertuğrul, İ., Öztaş, T. (2015). The application of sewing machine selection with the multi-objective optimization on the basis of ratio analysis method (MOORA) in apparel sector. Textile and Apparel, 25(1), 80-85. Retrieved May 17, 2020 from https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/23647/251887

FAO. (2019a). Dairy Market Review. FAO Publishing, Rome.FAO. (2019b). Food Outlook - Biannual Report on Global Food Markets. FAO Publishing, Rome.

Feizabadi, A., Doolabi, M.S., Sadrnezhaad, S.K., Zafarani, H.R., Doolabi, D.S. (2017). MCDM selection of pulse parameters for best tribological performance of Cr-Al2O3 nano-composite co-deposited from trivalent chromium bath. Journal of Alloys and Compounds, 727, 286-296. https://doi.org/10.1016/j.jallcom.2017.08.098

Feng, C.M., Wang, R.T. (2000). Performance evaluation for airlines including the consideration of financial ratios. Journal of Air Transport Management, 6(3), 133-142. https://doi.org/10.1016/S0969-6997(00)00003-X

Guo, X., Sun, Z. (2016). A novel evaluation approach for tourist choice of destination based on grey relation analysis. Scientific Programming, 2016, 1-10. https://doi.org/10.1155/2016/1812094

Gurmeric, V.E., Dogan, M., Toker, O.S., Senyigit, E., Ersoz, N.B. (2013). Application of different multi-criteria decision techniques to determine optimum flavour of prebiotic pudding based on sensory analyses. Food and Bioprocess Technology, 6(10), 2844-2859. https://doi.org/10.1007/s11947-012-0972-9

Hwang, C.L., Yoon, K. (1980). Multiple attribute decision making methods and applications: A state-of-the-art survey. New York: Springer-Verlag.

Jahan, A., Yazdani, M., Edwards, K.L. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering, 9(1), 1-14. https://doi.org/10.4995/ijpme.2021.13323

Kabak, M., Dağdeviren, M. (2017). A hybrid approach based on ANP and Grey Relational Analysis for machine selection. Technical Gazette, 24(Supplement 1), 109-118. https://doi.org/10.17559/TV-20141123105333

Kang, H.Y., Lee, A.H.I., Yang, C.Y. (2012). A fuzzy ANP model for supplier selection as applied to IC packaging. Journal of Intelligent Manufacturing, 23(5), 1477-1488.


Karaman, S.,Toker, Ö.S., Yüksel, F., Çam, M., Kayacier, A., Dogan, M. (2014). Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, 97(1), 97-110. https://doi.org/10.3168/jds.2013-7111

Karim, R., Karmaker, C.L. (2016). Machine selection by AHP and TOPSIS methods. American Journal of Industrial Engineering, 4(1), 7-13. https://doi.org/10.12691/ajie-4-1-2

Kumru, M., Kumru, P.Y. (2015). A fuzzy ANP model for the selection of 3D coordinate-measuring machine. Journal of Intelligent Manufacturing, 26(5), 999-1010. https://doi.org/10.1007/s10845-014-0882-y

Nguyen, H.T., Dawal, S. Z. Md., Nukman, Y., Aoyama, H. (2014). A hybrid approach for fuzzy multi-attribute decision making in machine tool selection with consideration of the interactions of attributes. Expert Systems with Applications, 41(6), 3078-3090. https://doi.org/10.1016/j.eswa.2013.10.039

OECD/FAO. (2019). OECD-FAO Agricultural Outlook 2019-2028. OECD Publishing, Paris.

Önüt, S., Kara, S.S., Işik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company. Expert Systems with Applications, 36(2), 3887-3895. https://doi.org/10.1016/j.eswa.2008.02.045

Özceylan, E., Kabak, M., Dağdeviren, M. (2016). A fuzzy-based decision making procedure for machine selection problem. Journal of Intelligent and Fuzzy Systems, 30(3), 1841-1856. https://doi.org/10.3233/IFS-151895

Özdağoğlu, A., Yakut, E., Bahar, S. (2017). Machine selection in a dairy product company with Entropy and SAW methods integration. Faculty of Economics and Administrative Sciences Journal, 32(1), 341-359. https://doi.org/10.24988/deuiibf.2017321605

Özgen, A., Tuzkaya, G., Tuzkaya, U.R., Özgen, D. (2011). A multi-criteria decision making approach for machine tool selection problem in a fuzzy environment. International Journal of Computational Intelligence Systems, 4(4), 431-445. https://doi.org/10.1080/18756891.2011.9727802

Ozturk, G., Dogan, M., Toker, O.S. (2014). Physicochemical, functional and sensory properties of mellorine enriched with different vegetable juices and TOPSIS approach to determine optimum juice concentration. Food Bioscience, 7, 45-55. https://doi.org/10.1016/j.fbio.2014.05.001

Pang, B., Bai, S. (2013). An integrated fuzzy synthetic evaluation approach for supplier selection based on analytic network process. Journal of Intelligent Manufacturing, 23(5), 163-174. https://doi.org/10.1007/s10845-011-0551-3

Paramasivam, V., Senthil, V., Ramasamy, N.R. (2011). Decision making in equipment selection: an integrated approach with digraph and matrix approach, AHP and ANP. The International Journal of Advanced Manufacturing Technology, 54(9-12), 1233-1244. https://doi.org/10.1007/s00170-010-2997-4

Pavličić, D.M. (2001). Normalisation affects the results of MADM methods. Yugoslav Journal of Operations Research, 11(2), 251-265. Retrieved May 6, 2020 from http://scindeks.ceon.rs/article.aspx?artid=0354-02430102251P

Samanta, B., Sarkar, B., Mukherjee, S.K. (2002). Selection of opencast mining equipment by a multi-criteria decision-making process. Mining Technology, 111(2), 136-142. https://doi.org/10.1179/mnt.2002.111.2.136

Seçme, N.Y., Bayrakdaroğlu, A., Kahraman, C. (2009). Fuzzy performance evaluation in Turkish Banking Sector using Analytic Hierarchy Process and TOPSIS. Expert Systems with Applications, 36(9), 11699-11709. https://doi.org/10.1016/j.eswa.2009.03.013

Sharma, A., Yadava, V. (2011). Optimization of cut quality characteristics during nd:yag laser straight cutting of ni-based superalloy thin sheet using grey relational analysis with entropy measurement. Materials and Manufacturing Processes, 26(12), 1522-1529. https://doi.org/10.1080/10426914.2011.551910

Shih, H. S., Shyur, H.J., Lee, E.S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7-8), 801-813. https://doi.org/10.1016/j.mcm.2006.03.023

Stanujkic, D., Đorđević, B., Đorđević, M. (2013). Comparative analysis of some prominent MCDM methods: A case of ranking Serbian Banks. Serbian Journal of Management, 8(2), 213-241. https://doi.org/10.5937/sjm8-3774

Štirbanović, Z., Stanujkić, D., Miljanović, I., Milanović, D. (2019). Application of MCDM methods for flotation machine selection. Minerals Engineering, 137, 140-146. https://doi.org/10.1016/j.mineng.2019.04.014

Sun, C.C. (2014). Combining grey relation analysis and entropy model for evaluating the operational performance: An empirical study. Quality and Quantity, 48(3), 1589-1600. https://doi.org/10.1007/s11135-013-9854-0

Taha, Z., Rostam, S. (2011). A fuzzy AHP-ANN-based decision support system for machine tool selection in a flexible manufacturing cell. International Journal of Advanced Manufacturing Technology, 57(5-8), 719-733. https://doi.org/10.1007/s00170-011-3323-5

Temiz, I., Çalış, G. (2017). Selection of construction equipment by using multi-criteria decision making methods. Procedia Engineering, 196, 286-293. https://doi.org/10.1016/j.proeng.2017.07.201

Tosun, N. (2006). Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis. The International Journal of Advanced Manufacturing Technology, 28(5-6), 450-455. https://doi.org/10.1007/s00170-004-2386-y

Uğur, L.O. (2017). Application of the VIKOR multi-criteria decision method for construction machine buying. Journal of Polytechnic, 20(4), 879-885. https://doi.org/10.2339/politeknik.369058

Ulubeyli, S., Kazaz, A. (2009). A multiple criteria decision-making approach to the selection of concrete pumps. Journal of Civil Engineering and Management, 15(4), 369-376. https://doi.org/10.3846/1392-3730.2009.15.369-376

Vafaei, N., Ribeiro, R.A., Camarinha-Matos, L.M. (2018). Data normalisation techniques in decision making: Case study with TOPSIS method. International Journal of Information and Decision Sciences, 10(1), 19-38. https://doi.org/10.1504/IJIDS.2018.090667

Vatansever, K., Kazançoğlu, Y. (2014). Integrated usage of fuzzy multi criteria decision making techniques for machine selection problems and an application. International Journal of Business and Social Science, 5(9), 12-24. https://doi.org/10.1504/IJIDS.2018.090667


Wang, T.C., Lee, H.D. (2009). Developing a fuzzy TOPSIS approach based on subjective weights and objective weights. Expert Systems with Applications, 36(5), 8980-8985. https://doi.org/10.1016/j.eswa.2008.11.035

Wu, J., Sun, J., Liang, L., Zha, Y. (2011). Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Systems with Applications, 38(5), 5162-5165. https://doi.org/10.1016/j.eswa.2010.10.046

Wu, W., Peng, Y. (2016). Extension of grey relational analysis for facilitating group consensus to oil spill emergency management. Annals of Operations Research, 238(1-2), 615-635. https://doi.org/10.1007/s10479-015-2067-2

Wu, Z., Ahmad, J., Xu, J. (2016). A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Applied Soft Computing, 42, 314-324. https://doi.org/10.1016/j.asoc.2016.02.007

Yazdani-Chamzini, A., Yakhchali, S.H. (2012). Tunnel Boring Machine (TBM) selection using fuzzy multicriteria decision making methods. Tunnelling and Underground Space Technology, 30, 194-204. https://doi.org/10.1016/j.tust.2012.02.021

Yılmaz, B., Dağdeviren, M. (2010). Comparative analysis of PROMETHEE and fuzzy PROMETHEE methods in equipment selection problem. Journal of the Faculty of Engineering and Architecture of Gazi University, 25(4), 811-826. Retrieved May 6, 2020 from https://avesis.gazi.edu.tr/yayin/989e528e-9184-4d8e-8970-fccfabbbed73/comparative-analysis-of-promethee-and-fuzzy-promethee-methods-in-equipment-selection-problem

Yılmaz, B., Dağdeviren, M. (2011). A combined approach for equipment selection: F-PROMETHEE method and zero-one goal programming. Expert Systems with Applications, 38(9), 11641-11650. https://doi.org/10.1016/j.eswa.2011.03.043

Zavadskas, E.K., Kaklauskas, A., Banaitis, A., Kvederyte, N. (2004). Housing credit access model: The case for Lithuania. European Journal of Operational Research, 155(2), 335-352. https://doi.org/10.1016/S0377-2217(03)00091-2

Zhang, H., Gu, C.L., Gu, L. W., Zhang, Y. (2011). The evaluation of tourism destination competitiveness by TOPSIS and information entropy: A case in the Yangtze River Delta of China. Tourism Management, 32(2), 443-451. https://doi.org/10.1016/j.tourman.2010.02.007




This item appears in the following Collection(s)

Show full item record