- -

Geometric and harmonic means based priority dispatching rules for single machine scheduling problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Geometric and harmonic means based priority dispatching rules for single machine scheduling problems

Show simple item record

Files in this item

dc.contributor.author Ahmad, Shafi es_ES
dc.contributor.author Khan, Zahid Akhtar es_ES
dc.contributor.author Ali, Mohammed es_ES
dc.contributor.author Asjad, Mohammad es_ES
dc.date.accessioned 2021-07-29T09:53:37Z
dc.date.available 2021-07-29T09:53:37Z
dc.date.issued 2021-07-28
dc.identifier.uri http://hdl.handle.net/10251/170825
dc.description.abstract [EN] This work proposes two new prority dispatching rules (PDRs) for solving single machine scheduling problems. These rules are based on the geometric mean (GM) and harmonic mean (HM) of the processing time (PT) and the due date (DD) and they are referred to as GMPD and HMPD respectively. Performance of the proposed PDRs is evaluated on the basis of five measures/criteria i.e. Total Flow Time (TFT), Total Lateness (TL), Number of Late Jobs (TNL), Total Earliness (TE) and Number of Early Parts (TNE). It is found that GMPD performs better than other PDRs in achieving optimal values of multiple performance measures. Further, effect of variation in the weight assigned to PT and DD on the combined performance of TFT and TL is also examined which reveals that for deriving optimal values of TFT and TL, weighted harmonic mean (WHMPD) rule with a weight of 0.105 outperforms other PDRs. The weighted geometric mean (WGMPD) rule with a weight of 0.37 is found to be the next after WHMPD followed by the weighted PDT i.e. WPDT rule with a weight of 0.76. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Job sequencing es_ES
dc.subject Priority dispatching rule es_ES
dc.subject Single machine scheduling es_ES
dc.subject Geometric mean of the processing time and due date (GMPD) es_ES
dc.subject Harmonic mean of the processing time and due date (HMPD) es_ES
dc.title Geometric and harmonic means based priority dispatching rules for single machine scheduling problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2021.15217
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ahmad, S.; Khan, ZA.; Ali, M.; Asjad, M. (2021). Geometric and harmonic means based priority dispatching rules for single machine scheduling problems. International Journal of Production Management and Engineering. 9(2):93-102. https://doi.org/10.4995/ijpme.2021.15217 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2021.15217 es_ES
dc.description.upvformatpinicio 93 es_ES
dc.description.upvformatpfin 102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\15217 es_ES
dc.description.references Baharom, M. Z., Nazdah, W., &Hussin, W. (2015). Scheduling Analysis for Job Sequencing in Veneer Lamination Line. Journal of Industrial and Intelligent Information, 3(3). https://doi.org/10.12720/jiii.3.3.181-185 es_ES
dc.description.references Chan, F. T. S., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). Analysis of dynamic dispatching rules for a flexible manufacturing system. Journal of Materials Processing Technology, 138(1), 325-331. https://doi.org/10.1016/S0924-0136(03)00093-1 es_ES
dc.description.references Cheng, T. C. E., &Kahlbacher, H. G. (1993). Single-machine scheduling to minimize earliness and number of tardy jobs. Journal of Optimization Theory and Applications, 77(3), 563-573. https://doi.org/10.1007/BF00940450 es_ES
dc.description.references da Silva, N. C. O., Scarpin, C. T., Pécora, J. E., & Ruiz, A. (2019). Online single machine scheduling with setup times depending on the jobs sequence. Computers & Industrial Engineering, 129, 251-258. https://doi.org/10.1016/j.cie.2019.01.038 es_ES
dc.description.references Doh, H.H., Yu, J.M., Kim, J.S., Lee, D.H., & Nam, S.H. (2013). A priority scheduling approach for flexible job shops with multiple process plans. International Journal of Production Research, 51(12), 3748-3764. https://doi.org/10.1080/00207543.2013.765074 es_ES
dc.description.references Dominic, Panneer D. D., Kaliyamoorthy, S., & Kumar, M. S. (2004). Efficient dispatching rules for dynamic job shop scheduling. The International Journal of Advanced Manufacturing Technology, 24(1), 70-75. es_ES
dc.description.references Ðurasević, M., &Jakobović, D. (2018). A survey of dispatching rules for the dynamic unrelated machines environment. Expert Systems with Applications, 113, 555-569. https://doi.org/10.1016/j.eswa.2018.06.053 es_ES
dc.description.references Forrester, P. (2006). Operations Management: An Integrated Approach. International Journal of Operations & Production Management. es_ES
dc.description.references Geiger, C. D., &Uzsoy, R. (2008). Learning effective dispatching rules for batch processor scheduling. International Journal of Production Research, 46(6), 1431-1454. https://doi.org/10.1080/00207540600993360 es_ES
dc.description.references Hamidi, M. (2016). Two new sequencing rules for the non-preemptive single machine scheduling problem. The Journal of Business Inquiry, 15(2), 116-127. es_ES
dc.description.references Holthaus, O., & Rajendran, C. (1997). New dispatching rules for scheduling in a job shop-An experimental study. The International Journal of Advanced Manufacturing Technology, 13(2), 148-153. https://doi.org/10.1007/BF01225761 es_ES
dc.description.references Hussain, M. S., & Ali, M. (2019). A Multi-agent Based Dynamic Scheduling of Flexible Manufacturing Systems. Global Journal of Flexible Systems Management, 20(3), 267-290. https://doi.org/10.1007/s40171-019-00214-9 es_ES
dc.description.references Jayamohan, M. S., & Rajendran, C. (2000). New dispatching rules for shop scheduling: A step forward. International Journal of Production Research, 38(3), 563-586. https://doi.org/10.1080/002075400189301 es_ES
dc.description.references Kadipasaoglu, S. N., Xiang, W., &Khumawala, B. M. (1997). A comparison of sequencing rules in static and dynamic hybrid flow systems. International Journal of Production Research, 35(5), 1359-1384. https://doi.org/10.1080/002075497195371 es_ES
dc.description.references Kanet, J. J., & Li, X. (2004). A Weighted Modified Due Date Rule for Sequencing to Minimize Weighted Tardiness. Journal of Scheduling, 7(4), 261-276. https://doi.org/10.1023/B:JOSH.0000031421.64487.95 es_ES
dc.description.references Lee, D.K., Shin, J.H., & Lee, D.H. (2020). Operations scheduling for an advanced flexible manufacturing system with multi-fixturing pallets. Computers & Industrial Engineering, 144, 106496. https://doi.org/10.1016/j.cie.2020.106496 es_ES
dc.description.references Lu, C.C., Lin, S.W., & Ying, K.C. (2012). Robust scheduling on a single machine to minimize total flow time. Computers & Operations Research, 39(7), 1682-1691. https://doi.org/10.1016/j.cor.2011.10.003 es_ES
dc.description.references Krishnan, M., Chinnusamy, T. R., & Karthikeyan, T. (2012). Performance Study of Flexible Manufacturing System Scheduling Using Dispatching Rules in Dynamic Environment. Procedia Engineering, 38, 2793-2798. https://doi.org/10.1016/j.proeng.2012.06.327 es_ES
dc.description.references Munir, E. U., Li, J., Shi, S., Zou, Z., & Yang, D. (2008). MaxStd: A task scheduling heuristic for heterogeneous computing environment. Information Technology Journal, 7(4), 679-683. https://doi.org/10.3923/itj.2008.679.683 es_ES
dc.description.references Oyetunji, E. O. (2009). Some common performance measures in scheduling problems. Research Journal of Applied Sciences, Engineering and Technology, 1(2), 6-9. es_ES
dc.description.references Pinedo, M. L. (2009). Planning and Scheduling in Manufacturing and Services (2nd ed.). Springer-Verlag. https://doi.org/10.1007/978-1-4419-0910-7 es_ES
dc.description.references Prakash, A., Chan, F. T. S., & Deshmukh, S. G. (2011). FMS scheduling with knowledge based genetic algorithm approach. Expert Systems with Applications, 38(4), 3161-3171. https://doi.org/10.1016/j.eswa.2010.09.002 es_ES
dc.description.references Rafsanjani, M. K., &Bardsiri, A. K. (2012). A New Heuristic Approach for Scheduling Independent Tasks on Heterogeneous Computing Systems. International Journal of Machine Learning and Computing, 371-376. https://doi.org/10.7763/IJMLC.2012.V2.147 es_ES
dc.description.references Tyagi, N., Tripathi, R. P., &Chandramouli, A. B. (2016). Single Machine Scheduling Model with Total Tardiness Problem. Indian Journal of Science and Technology, 9(37). https://doi.org/10.17485/ijst/2016/v9i37/97527 es_ES
dc.description.references Vinod, V., & Sridharan, R. (2008). Dynamic job-shop scheduling with sequence-dependent setup times: Simulation modeling and analysis. The International Journal of Advanced Manufacturing Technology, 36(3), 355-372. https://doi.org/10.1007/s00170-006-0836-4 es_ES
dc.description.references Waikar, A. M., Sarker, B. R., & Lal, A. M. (1995). A comparative study of some priority dispatching rules under different shop loads. Production Planning & Control, 6(4), 301-310. https://doi.org/10.1080/09537289508930284 es_ES


This item appears in the following Collection(s)

Show simple item record