- -

PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz, Maria es_ES
dc.contributor.author Rodriguez, Juan José es_ES
dc.contributor.author Erlaiz, Gorka es_ES
dc.contributor.author Olibares, Iratxe es_ES
dc.date.accessioned 2021-07-29T09:56:17Z
dc.date.available 2021-07-29T09:56:17Z
dc.date.issued 2021-07-28
dc.identifier.uri http://hdl.handle.net/10251/170826
dc.description.abstract [EN] This research presents the results of a project called “PHYRON: Cognitive Computing for the creation of an innovative Intelligence Experience Center”, funded by the Basque Government (Economic Development, Sustainability and Environment Department). The project started in April 2019 and it will end in December 2021. Its main objective was to arrange an industrial research about cognitive computing. The main aim was the application of these systems for the development of an Intelligent Experience Center (IExC) to facilitate:  i) enrichment of processes, products and services, in general client experiences, ii) automatic generation of technical predictions related to the product and the client behaviour through the exploitation of acquired knowledge, and iii) rationalization and automation of the processes that are involved in the after sale services both at technical and management level. The technological outcome presented in this paper is built using cognitive engines to enable learning from the client experience, and predictive models to anticipate client necessities. es_ES
dc.description.sponsorship We would like to thank the Basque Government for their support in the development of this project. Special thanks to the Economic Development, Sustainability and Environment Department. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cognitive computing es_ES
dc.subject Digitalization es_ES
dc.subject Digital transformation es_ES
dc.subject Predictive models es_ES
dc.subject Algorithms es_ES
dc.subject Big data es_ES
dc.title PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2021.15300
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ruiz, M.; Rodriguez, JJ.; Erlaiz, G.; Olibares, I. (2021). PHYRON: cognitive computing for the creation of an innovative Intelligence Experience Center. International Journal of Production Management and Engineering. 9(2):103-112. https://doi.org/10.4995/ijpme.2021.15300 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2021.15300 es_ES
dc.description.upvformatpinicio 103 es_ES
dc.description.upvformatpfin 112 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\15300 es_ES
dc.description.references Agrawal, A., Gans, J., & Goldfarb, A. (2017). What to expect from artificial intelligence. MIT Sloan Management Review. https://doi.org/10.3386/w24690 es_ES
dc.description.references Biecek, P. (2018). DALEX: explainers for complex predictive models in R. The Journal of Machine Learning Re-search, 19(1), 3245-3249. es_ES
dc.description.references Bond, A. H., & Gasser, L. (Eds.). (2014). Readings in distributed artificial intelligence. Morgan Kaufmann. es_ES
dc.description.references Bringsjord, S., & Schimanski, B. (2003, August). What is artificial intelligence? Psychometric AI as an answer. In IJCAI (pp. 887-893). es_ES
dc.description.references Engelmore, R. S. (1987). Artificial intelligence and knowledge based systems: origins, methods and opportunities for NDE. In Review of Progress in Quantitative Nondestructive Evaluation (pp. 1-20). Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1893-4_1 es_ES
dc.description.references Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. es_ES
dc.description.references Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory frame-work. International Journal of Retail & Distribution Management. https://doi.org/10.1108/IJRDM-09-2015-0140 es_ES
dc.description.references High, R. (2012). The era of cognitive systems: An inside look at IBM Watson and how it works. IBM Corporation, Redbooks, 1-16. es_ES
dc.description.references Hollnagel, E., & Woods, D. D. (1983). Cognitive systems engineering: New wine in new bottles. International journal of man-machine studies, 18(6), 583-600. https://doi.org/10.1016/S0020-7373(83)80034-0 es_ES
dc.description.references Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59-64. https://doi.org/10.1016/j.bdr.2015.01.006 es_ES
dc.description.references Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In 2013 Sixth international conference on contemporary computing (IC3) (pp. 404-409). IEEE. https://doi.org/10.1109/IC3.2013.6612229 es_ES
dc.description.references Kuhn, M. (2008). Building predictive models in R using the caret package. J Stat Softw, 28(5), 1-26. https://doi.org/10.18637/jss.v028.i05 es_ES
dc.description.references Forrester (2017): "Predictions 2018: The Honeymoon For AI is Over". es_ES
dc.description.references LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 es_ES
dc.description.references Mousannif, H., Sabah, H., Douiji, Y., & Sayad, Y. O. (2014, August). From big data to big projects: a step-by-step roadmap. In 2014 International Conference on Future Internet of Things and Cloud (pp. 373-378). IEEE. https://doi.org/10.1109/FiCloud.2014.66 es_ES
dc.description.references PwC (2017). UK Economic Outlook. Recuperado de http:// www.pwc.co.uk/economics es_ES
dc.description.references PWc, (2018): "Bots, Machine Learning, Servicios Cognitivos. Realidad y perspectivas de la Inteligencia Artificial en España, 2018". es_ES
dc.description.references Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35. https://doi.org/10.1038/nmeth.3707 es_ES
dc.description.references Steels, L. (1993). The artificial life roots of artificial intelligence. Artificial life, 1(1_2), 75-110. https://doi.org/10.1162/artl.1993.1.1_2.75 es_ES
dc.description.references Steyerberg, E. W., Harrell Jr, F. E., Borsboom, G. J., Eijkemans, M. J. C., Vergouwe, Y., & Habbema, J. D. F. (2001). Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of clinical epidemiology, 54(8), 774-781. https://doi.org/10.1016/S0895-4356(01)00341-9 es_ES
dc.description.references Strong, A. I. (2016). Applications of artificial intelligence & associated technologies. Science [ETEBMS-2016], 5(6). es_ES
dc.description.references Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2013). Data mining with big data. IEEE transactions on knowledge and data engineering, 26(1), 97-107. https://doi.org/10.1109/TKDE.2013.109 es_ES
dc.description.references Zhang, X. D. (2020). Machine learning. In A Matrix Algebra Approach to Artificial Intelligence (pp. 223-440). Springer, Singapore. https://doi.org/10.1007/978-981-15-2770-8_6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem