Mostrar el registro sencillo del ítem
dc.contributor.author | Peiró Barber, Rosa Mª | es_ES |
dc.contributor.author | Jiménez, Carles | es_ES |
dc.contributor.author | PERPIÑA MARTIN, GORKA | es_ES |
dc.contributor.author | Soler, Jaume Xavier | es_ES |
dc.contributor.author | Gisbert Domenech, Maria Carmen | es_ES |
dc.date.accessioned | 2021-07-30T03:31:24Z | |
dc.date.available | 2021-07-30T03:31:24Z | |
dc.date.issued | 2020-05-10 | es_ES |
dc.identifier.issn | 0304-4238 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/170968 | |
dc.description.abstract | [EN] Grapevine is grown as a grafted plant, mainly using phylloxera-resistant rootstocks obtained when this aphid destroyed European vineyards, and the use of a reduced number of rootstocks in each production area is common. This indicates that the genetic variability that is being used could be insufficient to tackle new stress constraints. Changes that will be produced as a consequence of climate change are promoting the development of new rootstocks and the study, in a deeper manner, of those already in use, mainly in relation to drought stress. In this work, we have studied 40 rootstock accessions, including clones of common rootstocks, others developed later, some recovered from old abandoned fields and other, resprouted rootstocks. From these accessions, 19 unique SSR profiles were obtained and chlorotypes were assigned, as no information was available for them in the VIVC database, thus generating new knowledge. Genetic variability was analysed in the 110 Ritcher, 140 Ruggieri and 1103¿Paulsen rootstocks (derived from Vitis berlandieri and Vitis rupestris), commonly used in the countries of greater wine production (Spain, France and Italy), and in the 19 rootstocks with unique profiles. As expected, higher variability was found in the latter. Fortunately, variability was also found in the small sample of which reflects there is variability among the three more-commonly-used rootstocks despite they are half and/or full sibs. Considering all the germplasm analysed, the relationships found agree with a recent report stating that some genotypes had been erroneously assigned, previously, and show that another genotype may not be correct. Variability was also found in clones of several rootstocks, with considerable variability in some of them, including two rootstocks rescued from old abandoned vineyards. This result suggests the possibility of evaluating these materials for other traits. Finally, evaluation of osmotic-stress tolerance was carried out in in vitro culture, using media containing PEG. Micropropagated plants of one rootstock classified as drought-resistant, another reported as sensitive and two others whose classification in the field is variable were used. The results indicate that this methodology can be useful in breeding programmes, to screen the variability in osmotic-stress tolerance among clones and to study root architecture and plasticity. | es_ES |
dc.description.sponsorship | The study was supported by the projects CGL2015-70843-R, MINECO co-funded with FEDER funds, and AGCOOP_D/2018/007, funded by FEADER, MAPA and Conselleria d'Agricultura, Desenvolupament Rural, Emergencia Climatica i Transicio Ecologica (Generalitat Valenciana). The authors thank the owners of nurseries and other members of the viticulture sector (see Table S1) for supplying the different accessions required to carry out this work and A. Frances who collaborated in the evaluation of osmotic stress tolerance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Scientia Horticulturae | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | AFLPs/M-AFLPs | es_ES |
dc.subject | Chlorotypes | es_ES |
dc.subject | Genetic variability | es_ES |
dc.subject | In vitro culture | es_ES |
dc.subject | PEG | es_ES |
dc.subject | SSR | es_ES |
dc.subject | Vitis | es_ES |
dc.subject | Water deficit | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.scienta.2020.109283 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2015-70843-R/ES/DESARROLLO DE PROTOCOLOS DE CONSERVACION IN VITRO Y DE CRIOCONSERVACION DE GERMOPLASMA DE VID: ANALISIS DE LA VARIABILIDAD Y CONSERVACION DE PORTAINJERTOS Y VARIEDADES MINORIT/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Agencia Valenciana de Fomento y Garantía Agraria//AGCOOP_D%2F2018%2F007/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Peiró Barber, RM.; Jiménez, C.; Perpiña Martin, G.; Soler, JX.; Gisbert Domenech, MC. (2020). Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Scientia Horticulturae. 266:1-11. https://doi.org/10.1016/j.scienta.2020.109283 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.scienta.2020.109283 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 266 | es_ES |
dc.relation.pasarela | S\408902 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | AGENCIA VALENCIANA DE FOMENTO Y GARANTIA AGRARIA | es_ES |
dc.description.references | Arroyo-García, R., Lefort, F., Andrés, M. T. de, Ibáñez, J., Borrego, J., Jouve, N., … Martínez-Zapater, J. M. (2002). Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 45(6), 1142-1149. doi:10.1139/g02-087 | es_ES |
dc.description.references | ARROYO-GARCÍA, R., RUIZ-GARCÍA, L., BOLLING, L., OCETE, R., LÓPEZ, M. A., ARNOLD, C., … MARTINEZ-ZAPATER, J. M. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707-3714. doi:10.1111/j.1365-294x.2006.03049.x | es_ES |
dc.description.references | Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12 | es_ES |
dc.description.references | Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018 | es_ES |
dc.description.references | Blum, A. (2016). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4-10. doi:10.1111/pce.12800 | es_ES |
dc.description.references | Bouslama, M., & Schapaugh, W. T. (1984). Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance 1. Crop Science, 24(5), 933-937. doi:10.2135/cropsci1984.0011183x002400050026x | es_ES |
dc.description.references | Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628-633. doi:10.1139/g96-080 | es_ES |
dc.description.references | Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107-115. doi:10.1016/j.scienta.2018.11.082 | es_ES |
dc.description.references | Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00442 | es_ES |
dc.description.references | Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., … Grando, M. S. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13(1). doi:10.1186/1471-2229-13-39 | es_ES |
dc.description.references | Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J., & Martínez-Sánchez, J. J. (2011). Review Article:Root development in horticultural plants grown under abiotic stress conditions – a review. The Journal of Horticultural Science and Biotechnology, 86(6), 543-556. doi:10.1080/14620316.2011.11512802 | es_ES |
dc.description.references | Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312 | es_ES |
dc.description.references | Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports, 26(5), 693-700. doi:10.1007/s00299-006-0275-6 | es_ES |
dc.description.references | Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., … Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402. doi:10.14719/pst.2019.6.4.578 | es_ES |
dc.description.references | Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools for clone identification: the case of the grapevine cultivar «Traminer». Plant Breeding, 121(6), 531-535. doi:10.1046/j.1439-0523.2002.00762.x | es_ES |
dc.description.references | Keller, M., Mills, L. J., & Harbertson, J. F. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Vigor, Yield Formation, and Fruit Ripening. American Journal of Enology and Viticulture, 63(1), 29-39. doi:10.5344/ajev.2011.11078 | es_ES |
dc.description.references | Lovisolo, C., Lavoie-Lamoureux, A., Tramontini, S., & Ferrandino, A. (2016). Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28(1), 53-66. doi:10.1007/s40626-016-0057-7 | es_ES |
dc.description.references | Manivannan, P., Abdul Jaleel, C., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., & Panneerselvam, R. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B: Biointerfaces, 57(1), 69-74. doi:10.1016/j.colsurfb.2007.01.004 | es_ES |
dc.description.references | Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. da S., & Santos-Serejo, J. A. dos. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301-1304. doi:10.1590/s0100-204x2017001200021 | es_ES |
dc.description.references | Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2011). Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins. Molecular Biotechnology, 50(1), 72-85. doi:10.1007/s12033-011-9403-9 | es_ES |
dc.description.references | Mozafari, A., Ghaderi, N., Havas, F., & Dedejani, S. (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria × ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256, 108601. doi:10.1016/j.scienta.2019.108601 | es_ES |
dc.description.references | Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269-5273. doi:10.1073/pnas.76.10.5269 | es_ES |
dc.description.references | Ollat, N., Bordenave, L., Tandonnet, J. P., Boursiquot, J. M., & Marguerit, E. (2016). Grapevine rootstocks: origins and perspectives. Acta Horticulturae, (1136), 11-22. doi:10.17660/actahortic.2016.1136.2 | es_ES |
dc.description.references | Peiró, R., Gammoudi, N., Yuste, A., Olmos, A., & Gisbert, C. (2015). Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish Journal of Agricultural Research, 13(2), e1005. doi:10.5424/sjar/2015132-7094 | es_ES |
dc.description.references | Peiró, R., Soler, J. X., Crespo, A., Jiménez, C., Cabello, F., & Gisbert, C. (2018). Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs. Spanish Journal of Agricultural Research, 16(2), e0702. doi:10.5424/sjar/2018162-12537 | es_ES |
dc.description.references | Riaz, S., Pap, D., Uretsky, J., Laucou, V., Boursiquot, J.-M., Kocsis, L., & Andrew Walker, M. (2019). Genetic diversity and parentage analysis of grape rootstocks. Theoretical and Applied Genetics, 132(6), 1847-1860. doi:10.1007/s00122-019-03320-5 | es_ES |
dc.description.references | Romero, P., Botía, P., & Navarro, J. M. (2018). Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209, 73-93. doi:10.1016/j.agwat.2018.07.012 | es_ES |
dc.description.references | San Pedro, T., Muñoz, P., Peiró, R., Jiménez, C., Olmos, A., & Gisbert, C. (2017). Evaluation of conditions for in vitro storage of commercial and minor grapevine (Vitis vinifera L.) cultivars. The Journal of Horticultural Science and Biotechnology, 93(1), 19-25. doi:10.1080/14620316.2017.1352462 | es_ES |
dc.description.references | Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42(3), 367-373. doi:10.1139/g98-168 | es_ES |
dc.description.references | Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20(1), 1-14. doi:10.1111/ajgw.12054 | es_ES |
dc.description.references | Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination, root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. doi:10.1016/j.indcrop.2019.01.019 | es_ES |
dc.description.references | Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985-990. doi:10.1007/bf00211051 | es_ES |
dc.description.references | Dargie, T., Dor, A., Manuel, A., & Molly, C. (2014). Responses of grapevine rootstocks to drought stress. International Journal of Plant Physiology and Biochemistry, 6(1), 1-6. doi:10.5897/ijppb2013.0199 | es_ES |
dc.description.references | Upadhyay, A., Saboji, M. D., Reddy, S., Deokar, K., & Karibasappa, G. S. (2007). AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Scientia Horticulturae, 112(2), 176-183. doi:10.1016/j.scienta.2006.12.011 | es_ES |
dc.description.references | Verslues, P. E., & Bray, E. A. (2005). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 57(1), 201-212. doi:10.1093/jxb/erj026 | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & TARR, C. R. (2007). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 3. Fresh fruit composition and dried grape quality. Australian Journal of Grape and Wine Research, 13(3), 130-141. doi:10.1111/j.1755-0238.2007.tb00243.x | es_ES |
dc.description.references | Yıldırım, K., Yağcı, A., Sucu, S., & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. doi:10.1016/j.plaphy.2018.03.034 | es_ES |
dc.description.references | Zavaglia, C., Pecile, M., Gardiman, M., & Bavaresco, L. (2016). Production of propagating material of grapevine rootstocks in the EU and Italy. Acta Horticulturae, (1136), 57-62. doi:10.17660/actahortic.2016.1136.9 | es_ES |
dc.description.references | Zhang, M., Chen, Q., & Shen, S. (2010). Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiologiae Plantarum, 33(2), 313-318. doi:10.1007/s11738-010-0549-z | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |