- -

Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peiró Barber, Rosa Mª es_ES
dc.contributor.author Jiménez, Carles es_ES
dc.contributor.author PERPIÑA MARTIN, GORKA es_ES
dc.contributor.author Soler, Jaume Xavier es_ES
dc.contributor.author Gisbert Domenech, Maria Carmen es_ES
dc.date.accessioned 2021-07-30T03:31:24Z
dc.date.available 2021-07-30T03:31:24Z
dc.date.issued 2020-05-10 es_ES
dc.identifier.issn 0304-4238 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170968
dc.description.abstract [EN] Grapevine is grown as a grafted plant, mainly using phylloxera-resistant rootstocks obtained when this aphid destroyed European vineyards, and the use of a reduced number of rootstocks in each production area is common. This indicates that the genetic variability that is being used could be insufficient to tackle new stress constraints. Changes that will be produced as a consequence of climate change are promoting the development of new rootstocks and the study, in a deeper manner, of those already in use, mainly in relation to drought stress. In this work, we have studied 40 rootstock accessions, including clones of common rootstocks, others developed later, some recovered from old abandoned fields and other, resprouted rootstocks. From these accessions, 19 unique SSR profiles were obtained and chlorotypes were assigned, as no information was available for them in the VIVC database, thus generating new knowledge. Genetic variability was analysed in the 110 Ritcher, 140 Ruggieri and 1103¿Paulsen rootstocks (derived from Vitis berlandieri and Vitis rupestris), commonly used in the countries of greater wine production (Spain, France and Italy), and in the 19 rootstocks with unique profiles. As expected, higher variability was found in the latter. Fortunately, variability was also found in the small sample of which reflects there is variability among the three more-commonly-used rootstocks despite they are half and/or full sibs. Considering all the germplasm analysed, the relationships found agree with a recent report stating that some genotypes had been erroneously assigned, previously, and show that another genotype may not be correct. Variability was also found in clones of several rootstocks, with considerable variability in some of them, including two rootstocks rescued from old abandoned vineyards. This result suggests the possibility of evaluating these materials for other traits. Finally, evaluation of osmotic-stress tolerance was carried out in in vitro culture, using media containing PEG. Micropropagated plants of one rootstock classified as drought-resistant, another reported as sensitive and two others whose classification in the field is variable were used. The results indicate that this methodology can be useful in breeding programmes, to screen the variability in osmotic-stress tolerance among clones and to study root architecture and plasticity. es_ES
dc.description.sponsorship The study was supported by the projects CGL2015-70843-R, MINECO co-funded with FEDER funds, and AGCOOP_D/2018/007, funded by FEADER, MAPA and Conselleria d'Agricultura, Desenvolupament Rural, Emergencia Climatica i Transicio Ecologica (Generalitat Valenciana). The authors thank the owners of nurseries and other members of the viticulture sector (see Table S1) for supplying the different accessions required to carry out this work and A. Frances who collaborated in the evaluation of osmotic stress tolerance. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Scientia Horticulturae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AFLPs/M-AFLPs es_ES
dc.subject Chlorotypes es_ES
dc.subject Genetic variability es_ES
dc.subject In vitro culture es_ES
dc.subject PEG es_ES
dc.subject SSR es_ES
dc.subject Vitis es_ES
dc.subject Water deficit es_ES
dc.subject.classification GENETICA es_ES
dc.title Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scienta.2020.109283 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2015-70843-R/ES/DESARROLLO DE PROTOCOLOS DE CONSERVACION IN VITRO Y DE CRIOCONSERVACION DE GERMOPLASMA DE VID: ANALISIS DE LA VARIABILIDAD Y CONSERVACION DE PORTAINJERTOS Y VARIEDADES MINORIT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Agencia Valenciana de Fomento y Garantía Agraria//AGCOOP_D%2F2018%2F007/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Peiró Barber, RM.; Jiménez, C.; Perpiña Martin, G.; Soler, JX.; Gisbert Domenech, MC. (2020). Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Scientia Horticulturae. 266:1-11. https://doi.org/10.1016/j.scienta.2020.109283 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scienta.2020.109283 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 266 es_ES
dc.relation.pasarela S\408902 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder AGENCIA VALENCIANA DE FOMENTO Y GARANTIA AGRARIA es_ES
dc.description.references Arroyo-García, R., Lefort, F., Andrés, M. T. de, Ibáñez, J., Borrego, J., Jouve, N., … Martínez-Zapater, J. M. (2002). Chloroplast microsatellite polymorphisms inVitisspecies. Genome, 45(6), 1142-1149. doi:10.1139/g02-087 es_ES
dc.description.references ARROYO-GARCÍA, R., RUIZ-GARCÍA, L., BOLLING, L., OCETE, R., LÓPEZ, M. A., ARNOLD, C., … MARTINEZ-ZAPATER, J. M. (2006). Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Molecular Ecology, 15(12), 3707-3714. doi:10.1111/j.1365-294x.2006.03049.x es_ES
dc.description.references Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12 es_ES
dc.description.references Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018 es_ES
dc.description.references Blum, A. (2016). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4-10. doi:10.1111/pce.12800 es_ES
dc.description.references Bouslama, M., & Schapaugh, W. T. (1984). Stress Tolerance in Soybeans. I. Evaluation of Three Screening Techniques for Heat and Drought Tolerance 1. Crop Science, 24(5), 933-937. doi:10.2135/cropsci1984.0011183x002400050026x es_ES
dc.description.references Bowers, J. E., Dangl, G. S., Vignani, R., & Meredith, C. P. (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 39(4), 628-633. doi:10.1139/g96-080 es_ES
dc.description.references Carvalho, M., Matos, M., Castro, I., Monteiro, E., Rosa, E., Lino-Neto, T., & Carnide, V. (2019). Screening of worldwide cowpea collection to drought tolerant at a germination stage. Scientia Horticulturae, 247, 107-115. doi:10.1016/j.scienta.2018.11.082 es_ES
dc.description.references Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00442 es_ES
dc.description.references Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., … Grando, M. S. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13(1). doi:10.1186/1471-2229-13-39 es_ES
dc.description.references Franco, J. A., Bañón, S., Vicente, M. J., Miralles, J., & Martínez-Sánchez, J. J. (2011). Review Article:Root development in horticultural plants grown under abiotic stress conditions – a review. The Journal of Horticultural Science and Biotechnology, 86(6), 543-556. doi:10.1080/14620316.2011.11512802 es_ES
dc.description.references Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312 es_ES
dc.description.references Gopal, J., & Iwama, K. (2007). In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol. Plant Cell Reports, 26(5), 693-700. doi:10.1007/s00299-006-0275-6 es_ES
dc.description.references Hussain, S., Hussain, S., Qadir, T., Khaliq, A., Ashraf, U., Parveen, A., … Rafiq, M. (2019). Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402. doi:10.14719/pst.2019.6.4.578 es_ES
dc.description.references Imazio, S., Labra, M., Grassi, F., Winfield, M., Bardini, M., & Scienza, A. (2002). Molecular tools for clone identification: the case of the grapevine cultivar «Traminer». Plant Breeding, 121(6), 531-535. doi:10.1046/j.1439-0523.2002.00762.x es_ES
dc.description.references Keller, M., Mills, L. J., & Harbertson, J. F. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Vigor, Yield Formation, and Fruit Ripening. American Journal of Enology and Viticulture, 63(1), 29-39. doi:10.5344/ajev.2011.11078 es_ES
dc.description.references Lovisolo, C., Lavoie-Lamoureux, A., Tramontini, S., & Ferrandino, A. (2016). Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28(1), 53-66. doi:10.1007/s40626-016-0057-7 es_ES
dc.description.references Manivannan, P., Abdul Jaleel, C., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., & Panneerselvam, R. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B: Biointerfaces, 57(1), 69-74. doi:10.1016/j.colsurfb.2007.01.004 es_ES
dc.description.references Marssaro, A. L., Morais-Lino, L. S., Cruz, J. L., Ledo, C. A. da S., & Santos-Serejo, J. A. dos. (2017). Simulation of in vitro water deficit for selecting drought-tolerant banana genotypes. Pesquisa Agropecuária Brasileira, 52(12), 1301-1304. doi:10.1590/s0100-204x2017001200021 es_ES
dc.description.references Meneghetti, S., Costacurta, A., Morreale, G., & Calò, A. (2011). Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins. Molecular Biotechnology, 50(1), 72-85. doi:10.1007/s12033-011-9403-9 es_ES
dc.description.references Mozafari, A., Ghaderi, N., Havas, F., & Dedejani, S. (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria × ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256, 108601. doi:10.1016/j.scienta.2019.108601 es_ES
dc.description.references Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10), 5269-5273. doi:10.1073/pnas.76.10.5269 es_ES
dc.description.references Ollat, N., Bordenave, L., Tandonnet, J. P., Boursiquot, J. M., & Marguerit, E. (2016). Grapevine rootstocks: origins and perspectives. Acta Horticulturae, (1136), 11-22. doi:10.17660/actahortic.2016.1136.2 es_ES
dc.description.references Peiró, R., Gammoudi, N., Yuste, A., Olmos, A., & Gisbert, C. (2015). Mature seeds for in vitro sanitation of the Grapevine leafroll associated virus (GLRaV-1 and GLRaV-3) from grape (Vitis vinifera L.). Spanish Journal of Agricultural Research, 13(2), e1005. doi:10.5424/sjar/2015132-7094 es_ES
dc.description.references Peiró, R., Soler, J. X., Crespo, A., Jiménez, C., Cabello, F., & Gisbert, C. (2018). Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs. Spanish Journal of Agricultural Research, 16(2), e0702. doi:10.5424/sjar/2018162-12537 es_ES
dc.description.references Riaz, S., Pap, D., Uretsky, J., Laucou, V., Boursiquot, J.-M., Kocsis, L., & Andrew Walker, M. (2019). Genetic diversity and parentage analysis of grape rootstocks. Theoretical and Applied Genetics, 132(6), 1847-1860. doi:10.1007/s00122-019-03320-5 es_ES
dc.description.references Romero, P., Botía, P., & Navarro, J. M. (2018). Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209, 73-93. doi:10.1016/j.agwat.2018.07.012 es_ES
dc.description.references San Pedro, T., Muñoz, P., Peiró, R., Jiménez, C., Olmos, A., & Gisbert, C. (2017). Evaluation of conditions for in vitro storage of commercial and minor grapevine (Vitis vinifera L.) cultivars. The Journal of Horticultural Science and Biotechnology, 93(1), 19-25. doi:10.1080/14620316.2017.1352462 es_ES
dc.description.references Sefc, K. M., Regner, F., Turetschek, E., Glössl, J., & Steinkellner, H. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome, 42(3), 367-373. doi:10.1139/g98-168 es_ES
dc.description.references Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20(1), 1-14. doi:10.1111/ajgw.12054 es_ES
dc.description.references Tang, D., Wei, F., Qin, S., Khan, A., Kashif, M. H., & Zhou, R. (2019). Polyethylene glycol induced drought stress strongly influences seed germination, root morphology and cytoplasm of different kenaf genotypes. Industrial Crops and Products, 137, 180-186. doi:10.1016/j.indcrop.2019.01.019 es_ES
dc.description.references Thomas, M. R., & Scott, N. S. (1993). Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical and Applied Genetics, 86(8), 985-990. doi:10.1007/bf00211051 es_ES
dc.description.references Dargie, T., Dor, A., Manuel, A., & Molly, C. (2014). Responses of grapevine rootstocks to drought stress. International Journal of Plant Physiology and Biochemistry, 6(1), 1-6. doi:10.5897/ijppb2013.0199 es_ES
dc.description.references Upadhyay, A., Saboji, M. D., Reddy, S., Deokar, K., & Karibasappa, G. S. (2007). AFLP and SSR marker analysis of grape rootstocks in Indian grape germplasm. Scientia Horticulturae, 112(2), 176-183. doi:10.1016/j.scienta.2006.12.011 es_ES
dc.description.references Verslues, P. E., & Bray, E. A. (2005). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 57(1), 201-212. doi:10.1093/jxb/erj026 es_ES
dc.description.references WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & TARR, C. R. (2007). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana). 3. Fresh fruit composition and dried grape quality. Australian Journal of Grape and Wine Research, 13(3), 130-141. doi:10.1111/j.1755-0238.2007.tb00243.x es_ES
dc.description.references Yıldırım, K., Yağcı, A., Sucu, S., & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. doi:10.1016/j.plaphy.2018.03.034 es_ES
dc.description.references Zavaglia, C., Pecile, M., Gardiman, M., & Bavaresco, L. (2016). Production of propagating material of grapevine rootstocks in the EU and Italy. Acta Horticulturae, (1136), 57-62. doi:10.17660/actahortic.2016.1136.9 es_ES
dc.description.references Zhang, M., Chen, Q., & Shen, S. (2010). Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiologiae Plantarum, 33(2), 313-318. doi:10.1007/s11738-010-0549-z es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem