- -

Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guijarro-Real, Carla es_ES
dc.contributor.author Adalid-Martinez, Ana Maria es_ES
dc.contributor.author Gregori-Montaner, Aroa es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Rodríguez Burruezo, Adrián es_ES
dc.contributor.author Fita, Ana es_ES
dc.date.accessioned 2021-07-30T03:31:26Z
dc.date.available 2021-07-30T03:31:26Z
dc.date.issued 2020-02-05 es_ES
dc.identifier.issn 0304-4238 es_ES
dc.identifier.uri http://hdl.handle.net/10251/170969
dc.description.abstract [EN] Wall rocket (Diplotaxis erucoides) is a wild vegetable with potential as a crop. Its seeds present secondary dormancy mechanisms that can become essential for the survival of wall rocket as a weed or in the wild. However, adaptation to crop conditions requires high and synchronised germination. The present work was aimed at studying whether different treatments improve the germination success of wall rocket seeds, and the effects on subsequent crop quality (morphology, yield, ascorbic acid and phenolics). By using of a L8 orthogonal array design, the main effects of soaking the seeds, scarification with sodium hypochlorite (NaClO), gibberellic acid (GA3), potassium nitrate (KNO3), cold, and heat treatments on germination traits of wall rocket were evaluated. NaClO scarification was the most efficient treatment and significantly increased the early and final germination, the germination rate and the vigour index. The best germination results were obtained when the NaClO scarification was followed by application of GA3. Thus, a protocol consisting on scarification with 2.5% NaClO for 5 min followed by treatment with 150 ppm GA3 for 24 h was proposed to improve wall rocket germination success. In addition, the germination treatments did not greatly affect the agronomic characters of baby-leaf plants. Scarification with NaClO reduced the days to harvest but did not affect the yield, so its use could have commercial benefits. Moreover, the content in ascorbic acid increased in treatments using NaClO, which may increase the added value of the potential crop. Overall, this study contributes to the domestication of wall rocket by providing a simple germination method that in addition has potential beneficial effects for crop quality. es_ES
dc.description.sponsorship C. Guijarro-Real thanks the Ministerio de Educacion, Cultura y Deporte (MECD) of Spain for financial support by means of a predoctoral grant (FPU14-06798). The research did not receive any other specific grant from funding agencies in the public, commercial, or not-for-profit sectors. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Scientia Horticulturae es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diplotaxis erucoides es_ES
dc.subject Germination es_ES
dc.subject Growth parameters es_ES
dc.subject Nutritional quality es_ES
dc.subject Secondary dormancy es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification GENETICA es_ES
dc.title Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.scienta.2019.109013 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU14%2F06798/ES/FPU14%2F06798/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Guijarro-Real, C.; Adalid-Martinez, AM.; Gregori-Montaner, A.; Prohens Tomás, J.; Rodríguez Burruezo, A.; Fita, A. (2020). Factors affecting germination of Diplotaxis erucoides and their effect on selected quality properties of the germinated products. Scientia Horticulturae. 261:1-8. https://doi.org/10.1016/j.scienta.2019.109013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.scienta.2019.109013 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 261 es_ES
dc.relation.pasarela S\390376 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Bell, L., Oruna-Concha, M. J., & Wagstaff, C. (2015). Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry, 172, 852-861. doi:10.1016/j.foodchem.2014.09.116 es_ES
dc.description.references Cano, A., & Bermejo, A. (2011). Influence of rootstock and cultivar on bioactive compounds in citrus peels. Journal of the Science of Food and Agriculture, 91(9), 1702-1711. doi:10.1002/jsfa.4375 es_ES
dc.description.references Caruso, G., Parrella, G., Giorgini, M., & Nicoletti, R. (2018). Crop Systems, Quality and Protection of Diplotaxis tenuifolia. Agriculture, 8(4), 55. doi:10.3390/agriculture8040055 es_ES
dc.description.references Cavaiuolo, M., & Ferrante, A. (2014). Nitrates and Glucosinolates as Strong Determinants of the Nutritional Quality in Rocket Leafy Salads. Nutrients, 6(4), 1519-1538. doi:10.3390/nu6041519 es_ES
dc.description.references Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299 es_ES
dc.description.references Chauhan, B. S., Gill, G., & Preston, C. (2006). African mustard (Brassica tournefortii) germination in southern Australia. Weed Science, 54(5), 891-897. doi:10.1614/ws-06-053r.1 es_ES
dc.description.references Chun, S.-C., Schneider, R. W., & Cohn, M. A. (1997). Sodium Hypochlorite: Effect of Solution pH on Rice Seed Disinfestation and Its Direct Effect on Seedling Growth. Plant Disease, 81(7), 821-824. doi:10.1094/pdis.1997.81.7.821 es_ES
dc.description.references Darmency, H., Colbach, N., & Le Corre, V. (2017). Relationship between weed dormancy and herbicide rotations: implications in resistance evolution. Pest Management Science, 73(10), 1994-1999. doi:10.1002/ps.4611 es_ES
dc.description.references Di Gioia, F., Avato, P., Serio, F., & Argentieri, M. P. (2018). Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 69, 197-204. doi:10.1016/j.jfca.2018.01.022 es_ES
dc.description.references Dueñas, M., Martínez-Villaluenga, C., Limón, R. I., Peñas, E., & Frias, J. (2015). Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International, 70, 55-63. doi:10.1016/j.foodres.2015.01.018 es_ES
dc.description.references Evans, A. S., Randall, J. M., & Cabin, R. J. (1996). Morphological side effects of using gibberellic acid to induce germination: consequences for the study of seed dormancy. American Journal of Botany, 83(5), 543-549. doi:10.1002/j.1537-2197.1996.tb12737.x es_ES
dc.description.references Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774 es_ES
dc.description.references Finch-Savage, W. E., & Footitt, S. (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany, 68(4), 843-856. doi:10.1093/jxb/erw477 es_ES
dc.description.references Finkelstein, R., Reeves, W., Ariizumi, T., & Steber, C. (2008). Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 59(1), 387-415. doi:10.1146/annurev.arplant.59.032607.092740 es_ES
dc.description.references González-Benito, M. E., Pérez-García, F., Tejeda, G., & Gómez-Campo, C. (2011). Effect of the gaseous environment and water content on seed viability of four Brassicaceae species after 36 years storage. Seed Science and Technology, 39(2), 443-451. doi:10.15258/sst.2011.39.2.16 es_ES
dc.description.references Gordillo, L. F., Stevens, M. R., Millard, M. A., & Geary, B. (2008). ScreeningTwo Lycopersicon peruvianumCollections for Resistance toTomato spotted wilt virus. Plant Disease, 92(5), 694-704. doi:10.1094/pdis-92-5-0694 es_ES
dc.description.references GRAEBER, K., NAKABAYASHI, K., MIATTON, E., LEUBNER-METZGER, G., & SOPPE, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769-1786. doi:10.1111/j.1365-3040.2012.02542.x es_ES
dc.description.references Grivetti, L. E., & Ogle, B. M. (2000). Value of traditional foods in meeting macro- and micronutrient needs: the wild plant connection. Nutrition Research Reviews, 13(1), 31-46. doi:10.1079/095442200108728990 es_ES
dc.description.references Guarrera, P. M., & Savo, V. (2016). Wild food plants used in traditional vegetable mixtures in Italy. Journal of Ethnopharmacology, 185, 202-234. doi:10.1016/j.jep.2016.02.050 es_ES
dc.description.references Guijarro-Real, C., Prohens, J., Rodriguez-Burruezo, A., Adalid-Martínez, A. M., López-Gresa, M. P., & Fita, A. (2019). Wild edible fool’s watercress, a potential crop with high nutraceutical properties. PeerJ, 7, e6296. doi:10.7717/peerj.6296 es_ES
dc.description.references Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., & Fita, A. (2018). Importance of the growing system in the leaf morphology of Diplotaxis erucoides. Acta Horticulturae, (1202), 25-32. doi:10.17660/actahortic.2018.1202.4 es_ES
dc.description.references Guijarro-Real, C., Rodríguez-Burruezo, A., Prohens, J., Raigón, M. D., & Fita, A. (2019). HS-SPME analysis of the volatiles profile of water celery (Apium nodiflorum), a wild vegetable with increasing culinary interest. Food Research International, 121, 765-775. doi:10.1016/j.foodres.2018.12.054 es_ES
dc.description.references Handa, V., Kumar, V., Panghal, A., Suri, S., & Kaur, J. (2017). Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. Journal of Food Science and Technology, 54(13), 4229-4239. doi:10.1007/s13197-017-2892-1 es_ES
dc.description.references Hsiao, A. I. (1979). The effect of sodium hypochlorite and gibberellic acid on seed dormancy and germination of wild oats (Avena fatua). Canadian Journal of Botany, 57(16), 1729-1734. doi:10.1139/b79-212 es_ES
dc.description.references Hsiao, A. I. (1979). The effect of sodium hypochlorite, gibberellic acid, and light on seed dormancy and germination of wild buckwheat (Polygonum convolvulus) and cow cockle (Saponaria vaccaria). Canadian Journal of Botany, 57(16), 1735-1739. doi:10.1139/b79-213 es_ES
dc.description.references HSIAO, A. I. (1980). THE EFFECT OF SODIUM HYPOCHLORITE, GIBBERELLIC ACID AND LIGHT ON SEED DORMANCY AND GERMINATION OF STINKWEED AND WILD MUSTARD. Canadian Journal of Plant Science, 60(2), 643-649. doi:10.4141/cjps80-091 es_ES
dc.description.references Katzman, L. S., Taylor, A. G., & Langhans, R. W. (2001). Seed Enhancements to Improve Spinach Germination. HortScience, 36(5), 979-981. doi:10.21273/hortsci.36.5.979 es_ES
dc.description.references Kaur, S., Gupta, A. K., & Kaur, N. (2000). Plant Growth Regulation, 30(1), 61-70. doi:10.1023/a:1006371219048 es_ES
dc.description.references Liang, Y.-C., Reid, M. S., & Jiang, C.-Z. (2014). Controlling plant architecture by manipulation of gibberellic acid signalling in petunia. Horticulture Research, 1(1). doi:10.1038/hortres.2014.61 es_ES
dc.description.references Martínez-Laborde, J. B., Pita-Villamil, J. M., & Pérez-García, F. (2007). Short communication. Secondary dormancy in Diplotaxis erucoides: a possible adaptative strategy as an annual weed. Spanish Journal of Agricultural Research, 5(3), 402. doi:10.5424/sjar/2007053-265 es_ES
dc.description.references Marty, J. E., & Kettenring, K. M. (2017). Seed Dormancy Break and Germination for Restoration of Three Globally Important Wetland Bulrushes. Ecological Restoration, 35(2), 138-147. doi:10.3368/er.35.2.138 es_ES
dc.description.references Molina, M., Tardío, J., Aceituno-Mata, L., Morales, R., Reyes-García, V., & Pardo-de-Santayana, M. (2014). Weeds and Food Diversity: Natural Yield Assessment and Future Alternatives for Traditionally Consumed Wild Vegetables. Journal of Ethnobiology, 34(1), 44-67. doi:10.2993/0278-0771-34.1.44 es_ES
dc.description.references Morales, P., Ferreira, I. C. F. R., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Fernández-Ruiz, V., … Tardío, J. (2014). Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology, 55(1), 389-396. doi:10.1016/j.lwt.2013.08.017 es_ES
dc.description.references Mostafa, G. G., & Abou Alham, M. F. (2010). Effect of Gibberellic Acid and Indole 3-acetic Acid on Improving Growth and Accumulation of Phytochemical Composition in Balanites aegyptiaca Plants. American Journal of Plant Physiology, 6(1), 36-43. doi:10.3923/ajpp.2011.36.43 es_ES
dc.description.references Née, G., Xiang, Y., & Soppe, W. J. (2017). The release of dormancy, a wake-up call for seeds to germinate. Current Opinion in Plant Biology, 35, 8-14. doi:10.1016/j.pbi.2016.09.002 es_ES
dc.description.references PEREZ-GARCIA, F., IRIONDO, J. M., & MARTINEZ-LABORDE, J. B. (1995). Germination behaviour in seeds of Diplotaxis erucoides and D. virgata. Weed Research, 35(6), 495-502. doi:10.1111/j.1365-3180.1995.tb01647.x es_ES
dc.description.references Plazas, M., Prohens, J., Cuñat, A., Vilanova, S., Gramazio, P., Herraiz, F., & Andújar, I. (2014). Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. International Journal of Molecular Sciences, 15(10), 17221-17241. doi:10.3390/ijms151017221 es_ES
dc.description.references Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030 es_ES
dc.description.references Sans, F. X., & Masalles, R. M. (1994). Life-history variation in the annual arable weed Diplotaxis erucoides (Cruciferae). Canadian Journal of Botany, 72(1), 10-19. doi:10.1139/b94-003 es_ES
dc.description.references Shin, T., Fujikawa, K., Moe, A. Z., & Uchiyama, H. (2018). Traditional knowledge of wild edible plants with special emphasis on medicinal uses in Southern Shan State, Myanmar. Journal of Ethnobiology and Ethnomedicine, 14(1). doi:10.1186/s13002-018-0248-1 es_ES
dc.description.references Silk, W. K., & Jones, R. L. (1975). Gibberellin Response in Lettuce Hypocotyl Sections. Plant Physiology, 56(2), 267-272. doi:10.1104/pp.56.2.267 es_ES
dc.description.references Tavares, L. C., Rufino, C. A., Oliveira, S. de, Brunes, A. P., & Villela, F. A. (2014). Treatment of rice seeds with salicylic acid: seed physiological quality and yield. Journal of Seed Science, 36(3), 352-356. doi:10.1590/2317-1545v36n3636 es_ES
dc.description.references Taylor, A., & Cosgrove, D. J. (1989). Gibberellic Acid Stimulation of Cucumber Hypocotyl Elongation. Plant Physiology, 90(4), 1335-1340. doi:10.1104/pp.90.4.1335 es_ES
dc.description.references Wagner, E. J., & Oplinger, R. W. (2017). Effect of overwinter hydration, seed storage time, temperature, photoperiod, water depth, and scarification on seed germination of some Schoenoplectus , Polygonum , Eleocharis and Alisma species. Aquatic Botany, 136, 164-174. doi:10.1016/j.aquabot.2016.10.004 es_ES
dc.description.references Yamamuro, C., Zhu, J.-K., & Yang, Z. (2016). Epigenetic Modifications and Plant Hormone Action. Molecular Plant, 9(1), 57-70. doi:10.1016/j.molp.2015.10.008 es_ES
dc.description.references Zhou, Y. M., Lu, J. J., Tan, D. Y., Baskin, C. C., & Baskin, J. M. (2015). Seed Germination Ecology of the Cold Desert Annual Isatis violascens (Brassicaceae): Two Levels of Physiological Dormancy and Role of the Pericarp. PLOS ONE, 10(10), e0140983. doi:10.1371/journal.pone.0140983 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem