- -

MERLIN: Una nueva herramienta para la predicción del riesgo de inundaciones en la demarcación hidrográfica Galicia-Costa

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MERLIN: Una nueva herramienta para la predicción del riesgo de inundaciones en la demarcación hidrográfica Galicia-Costa

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fraga, Ignacio es_ES
dc.contributor.author Cea, Luis es_ES
dc.contributor.author Puertas, Jerónimo es_ES
dc.contributor.author Mosqueira, Gonzalo es_ES
dc.contributor.author Quinteiro, Belén es_ES
dc.contributor.author Botana, Sonia es_ES
dc.contributor.author Fernández, Laura es_ES
dc.contributor.author Salsón, Santiago es_ES
dc.contributor.author Fernández-García, Guillermo es_ES
dc.contributor.author Taboada, Juan es_ES
dc.coverage.spatial east=-8.569797416551053; north=42.879506124712; name=Galicia, Espanya es_ES
dc.date.accessioned 2021-07-30T07:37:25Z
dc.date.available 2021-07-30T07:37:25Z
dc.date.issued 2021-07-27
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/170995
dc.description.abstract [EN] This article presents MERLIN, a tool for flood hazard evaluation, which forecasts discharges and water depths in flood prone areas of the Galicia Costa district. The warning system operates in two stages. During the hindcast stage, hydrological models of the basins included in the system assimilate hydro-meteorological data in order to characterize soil infiltration capacity. During the forecast stage, hydrological models are fed with meteorological predictions and discharge forecasts along the basins. Forecasted discharges define boundary conditions of hydraulic models, which compute the flood extent and the water depths over the upcoming days. The performance of MERLIN was evaluated in 4 areas using discharge data from the winter months of 2019-2020. Results proved MERLIN’s ability of predicting the discharges observed afterwards. es_ES
dc.description.abstract [ES] Este artículo presenta MERLIN, una nueva herramienta para estimar el riesgo de inundaciones a partir de predicciones de caudales y calados en Áreas de Riesgo Potencial Significativo de Inundaciones (ARPSIS) de la demarcación hidrográfica Galicia-Costa. El sistema MERLIN opera en dos fases. Durante una primera fase de inicialización, modelos hidrológicos de las cuencas incluidas en el sistema asimilan datos hidro-meteorológicos para caracterizar la capacidad de infiltración del terreno. Durante la fase de predicción, los modelos hidrológicos previamente inicializados se alimentan con predicciones meteorológicas para determinar los caudales esperados durante los próximos días. Las predicciones de caudal alimentan a modelos hidráulicos de las ARPSIS que determinan los calados y la extensión de zonas inundadas. El funcionamiento de MERLIN se evaluó en 4 cuencas piloto a partir de los caudales registrados durante los temporales del invierno del 2019-2020, mostrando una buena capacidad de predecir los valores posteriormente observados. es_ES
dc.description.sponsorship El desarrollo del sistema MERLIN y el resto de trabajos presentados en este artículo fue posible gracias a la financiación aportada por Augas de Galicia dentro del Convenio de colaboración entre Augas de Galicia e a Fundación de Enxeñería Civil de Galicia para a mellora do sistema de alerta temperá de risco de inundación na demarcación hidrográfica Galicia-costa. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Inundación es_ES
dc.subject Predicción es_ES
dc.subject Gestión de riesgo de inundación es_ES
dc.subject Floods es_ES
dc.subject Early warning system es_ES
dc.subject Forecasting es_ES
dc.subject Flood risk management es_ES
dc.title MERLIN: Una nueva herramienta para la predicción del riesgo de inundaciones en la demarcación hidrográfica Galicia-Costa es_ES
dc.title.alternative MERLIN: A new tool for flood hazard forecasting at the Galicia-Costa Hydrographic Demarcation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2021.15565
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Fraga, I.; Cea, L.; Puertas, J.; Mosqueira, G.; Quinteiro, B.; Botana, S.; Fernández, L.... (2021). MERLIN: Una nueva herramienta para la predicción del riesgo de inundaciones en la demarcación hidrográfica Galicia-Costa. Ingeniería del agua. 25(3):215-227. https://doi.org/10.4995/ia.2021.15565 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2021.15565 es_ES
dc.description.upvformatpinicio 215 es_ES
dc.description.upvformatpfin 227 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\15565 es_ES
dc.contributor.funder Augas de Galicia es_ES
dc.description.references Alvarez-Garreton, C., Ryu, D., Western, A.W., Su, C.H., Crow, W.T., Robertson, E., Leahy, C. 2015. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes. Hydrology and Earth System Sciences, 19(4), 1659-1676. https://doi.org/10.5194/hess-19-1659-2015 es_ES
dc.description.references Arnell, N.W., Gosling, S.N. 2016. The impacts of climate change on river flood risk at the global scale. Climatic Change, 134(3), 387-401. https://doi.org/10.1007/s10584-014-1084-5 es_ES
dc.description.references Bennett, T.H., Peters, J.C. 2000. Continuous soil moisture accounting in the hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS). Building partnerships, 1-10. es_ES
dc.description.references Berghuijs, W.R., Aalbers, E.E., Larsen, J.R., Trancoso, R., Woods, R.A. 2017. Recent changes in extreme floods across multiple continents. Environmental Research Letters, 12(11), 114035. https://doi.org/10.1088/1748-9326/aa8847 es_ES
dc.description.references Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Metodos Numericos en Ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004 es_ES
dc.description.references Carracedo, P. 2003. Acoplamiento de un modelo hidrodinámico de escala global con uno de escala regional para Galicia. Revista Real Academia Galega de Ciencias, 22, 85. es_ES
dc.description.references Cea, L., Fraga, I. 2018. Incorporating antecedent moisture conditions and intraevent variability of rainfall on flood frequency analysis in poorly gauged basins. Water Resources Research, 54, 8774-8791. https://doi.org/10.1029/2018WR023194 es_ES
dc.description.references Cronshey, R. 1986. Urban hydrology for small watersheds. US Department of Agriculture Soil Conservation Service Engineering Division. es_ES
dc.description.references García-Feal, O., González-Cao, J., Gómez-Gesteira, M., Cea, L., Domínguez, J., Formella, A. 2018. An accelerated tool for flood modelling based on Iber. Water, 10(10) 1459. https://doi.org/10.3390/w10101459 es_ES
dc.description.references Hossain, F., Siddique-E-Akbor, A.H.M., Yigzaw, W., Shah-Newaz, S., Hossain, M., Mazumder, L.C., Turk, F.J. 2014. Crossing the "valley of death": lessons learned from implementing an operational satellite-based flood forecasting system. Bulletin of the American Meteorological Society, 95(8), 1201-1207. https://doi.org/10.1175/BAMS-D-13-00176.1 es_ES
dc.description.references IPCC (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways in the context of strengthening the global response to the threat of climate change sustainable development and efforts to eradicate poverty. In Press. es_ES
dc.description.references Jewell, S.A., Gaussiat, N. 2015. An assessment of kriging-based rain-gauge-radar merging techniques. Quarterly Journal of the Royal Meteorological Society, 141(691), 2300-2313. https://doi.org/10.1002/qj.2522 es_ES
dc.description.references Kasiviswanathan, K.S., He, J., Sudheer, K.P., Tay, J.H. 2016. Potential application of wavelet neural network ensemble to forecast streamflow for flood management. Journal of hydrology, 536, 161-173. https://doi.org/10.1016/j.jhydrol.2016.02.044 es_ES
dc.description.references Kellens, W., Vanneuville, W., Verfaillie, E., Meire, E., Deckers, P., De Maeyer, P. 2013. Flood risk management in Flanders: past developments and future challenges. Water Resources Management, 27(10), 3585-3606. https://doi.org/10.1007/s11269-013-0366-4 es_ES
dc.description.references Krajewski, W.F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C., Small, S.J. 2017. Real-time flood forecasting and information system for the state of Iowa. Bulletin of the American Meteorological Society, 98(3), 539-554. https://doi.org/10.1175/BAMS-D-15-00243.1 es_ES
dc.description.references Kumar, M., Sahay, R.R. 2018. Wavelet-genetic programming conjunction model for flood forecasting in rivers. Hydrology Research, 49(6), 1880-1889. https://doi.org/10.2166/nh.2018.183 es_ES
dc.description.references Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T. 2015. Data assimilation of satellite soil moisture into rainfall-runoff modelling: A complex recipe?. Remote Sensing, 7(9), 11403-11433. https://doi.org/10.3390/rs70911403 es_ES
dc.description.references McKay, M.D., Beckman, R.J., Conover, W.J. 1979 A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239-245. es_ES
dc.description.references Mure-Ravaud, M., Binet, G., Bracq, M., Perarnaud, J.J., Fradin, A., Litrico, X. 2016. A web based tool for operational realtime flood forecasting using data assimilation to update hydraulic states. Environmental Modelling and Software, 84, 35-49. https://doi.org/10.1016/j.envsoft.2016.06.002 es_ES
dc.description.references Naranjo, L., Taboada, J.J., Lage, A., Salsón, S., Montero, P., Souto, J.A., Pérez-Muñuzuri, V. 2001. Estudio de las anómalas condiciones meteorológicas sobre Galicia durante el otoño de los años 2000 y 2001. Revista Real Academia Galega de Ciencias, 20, 113-133 es_ES
dc.description.references Nguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., AghaKouchak, A., Sanders, B., Koren, V., Cui, Z., Smith, M. 2016. A high resolution coupled hydrologic-hydraulic model (HiResFlood-UCI) for flash flood modeling. Journal of Hydrology, 541, 401-420. https://doi.org/10.1016/j.jhydrol.2015.10.047 es_ES
dc.description.references Razmkhah, H. 2016. Comparing performance of different loss methods in rainfall-runoff modeling. Water resources, 43(1), 207-224. https://doi.org/10.1134/S0097807816120058 es_ES
dc.description.references Rosburg, T.T., Nelson, P.A., Bledsoe, B.P. 2017. Effects of urbanization on flow duration and stream flashiness: a case study of Puget Sound streams, western Washington, USA. Journal of the American Water Resources Association, 53(2), 493-507. https://doi.org/10.1111/1752-1688.12511 es_ES
dc.description.references Sanz-Ramos, M., Amengual, A., Bladé i Castellet, E., Romero, R., Roux, H. 2018. Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and highresolution meteorological model. Proceedings of River Flow 2018-Ninth International Conference on Fluvial Hydraulics (pp. 1-8) Lyon France. https://doi.org/10.1051/e3sconf/20184006028 es_ES
dc.description.references Scharffenberg, W.A, Fleming, M.J. 2006. Hydrologic modeling system HEC-HMS: User's manual. US Army Corps of Engineers Hydrologic Engineering Center. es_ES
dc.description.references Shchepetkin, A.F., McWilliams, J.C. 2005. The regional oceanic modeling system (ROMS): a split-explicit free-surface topographyfollowing-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002 es_ES
dc.description.references Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G. 2008. A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR. es_ES
dc.description.references Sopelana, J., Cea, L., Ruano, S. 2018. A continuous simulation approach for the estimation of extreme flood inundation in coastal river reaches affected by meso and macro tides. Natural Hazards, 93(3) 1337-1358. https://doi.org/10.1007/s11069-018-3360-6 es_ES
dc.description.references Thielen, J., Bartholmes, J., Ramos, M. H., & Roo, A. D. 2009. The European flood alert system-part 1: concept and development. Hydrology and Earth System Sciences, 13(2), 125-140. https://doi.org/10.5194/hess-13-125-2009 es_ES
dc.description.references Thiemig, V., Bisselink, B., Pappenberger, F., Thielen, J. 2015. A pan-African medium-range ensemble flood forecast system. Hydrology and Earth System Sciences, 19(8), 3365-3385. https://doi.org/10.5194/hess-19-3365-2015 es_ES
dc.description.references U.S. Department of Agriculture, Natural Resources Conservation Service. 2010. National Engineering Handbook, Washington, DC es_ES
dc.description.references Venâncio, A., Montero, P., Costa, P., Regueiro, S., Brands, S., Taboada, J. 2019. An Integrated Perspective of the Operational Forecasting System in Rías Baixas (Galicia, Spain) with Observational Data and End-Users. In International Conference on Computational Science (pp. 229-239). Springer, Cham. https://doi.org/10.1007/978-3-030-22747-0_18 es_ES
dc.description.references Wallemarq, P., Below, R., McLean, D. 2018. UNISDR and CRED report: Economic Losses, Poverty & Disasters (1998-2017). es_ES
dc.description.references Wanders, N., Karssenberg, D., Roo, A.D., De Jong, S.M., Bierkens, M.F.P. 2014. The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343-2357. https://doi.org/10.5194/hess-18-2343-2014 es_ES
dc.description.references Weerts, A.H., Winsemius, H.C., Verkade, J.S. 2011. Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales). Hydrology and Earth System Sciences, 15(1), 255-265. https://doi.org/10.5194/hess-15-255-2011 es_ES
dc.description.references Xia, X., Liang, Q., Ming, X. 2019. A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS). Advances in Water Resources, 132, 103392. https://doi.org/10.1016/j.advwatres.2019.103392 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem