- -

Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fornaciari, Tommaso es_ES
dc.contributor.author Cagnina, Leticia es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Poesio, Massimo es_ES
dc.date.accessioned 2021-07-31T03:30:47Z
dc.date.available 2021-07-31T03:30:47Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 1574-020X es_ES
dc.identifier.uri http://hdl.handle.net/10251/171117
dc.description.abstract [EN] Identifying deceptive online reviews is a challenging tasks for Natural Language Processing (NLP). Collecting corpora for the task is difficult, because normally it is not possible to know whether reviews are genuine. A common workaround involves collecting (supposedly) truthful reviews online and adding them to a set of deceptive reviews obtained through crowdsourcing services. Models trained this way are generally successful at discriminating between `genuine¿ online reviews and the crowdsourced deceptive reviews. It has been argued that the deceptive reviews obtained via crowdsourcing are very different from real fake reviews, but the claim has never been properly tested. In this paper, we compare (false) crowdsourced reviews with a set of `real¿ fake reviews published on line. We evaluate their degree of similarity and their usefulness in training models for the detection of untrustworthy reviews. We find that the deceptive reviews collected via crowdsourcing are significantly different from the fake reviews published online. In the case of the artificially produced deceptive texts, it turns out that their domain similarity with the targets affects the models¿ performance, much more than their untruthfulness. This suggests that the use of crowdsourced datasets for opinion spam detection may not result in models applicable to the real task of detecting deceptive reviews. As an alternative method to create large-size datasets for the fake reviews detection task, we propose methods based on the probabilistic annotation of unlabeled texts, relying on the use of meta-information generally available on the e-commerce sites. Such methods are independent from the content of the reviews and allow to train reliable models for the detection of fake reviews. es_ES
dc.description.sponsorship Leticia Cagnina thanks CONICET for the continued financial support. This work was funded by MINECO/FEDER (Grant No. SomEMBED TIN2015-71147-C2-1-P). The work of Paolo Rosso was partially funded by the MISMIS-FAKEnHATE Spanish MICINN research project (PGC2018-096212-B-C31). Massimo Poesio was in part supported by the UK Economic and Social Research Council (Grant Number ES/M010236/1). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Language Resources and Evaluation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Deception detection es_ES
dc.subject Crowdsourcing es_ES
dc.subject Ground truth es_ES
dc.subject Probabilistic labeling es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data? es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10579-020-09486-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//ES%2FM010236%2F1/GB/Human Rights and Information Technology in the Era of Big Data/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-71147-C2-1-P/ES/COMPRENSION DEL LENGUAJE EN LOS MEDIOS DE COMUNICACION SOCIAL - REPRESENTANDO CONTEXTOS DE FORMA CONTINUA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096212-B-C31/ES/DESINFORMACION Y AGRESIVIDAD EN SOCIAL MEDIA: AGREGANDO INFORMACION Y ANALIZANDO EL LENGUAJE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Fornaciari, T.; Cagnina, L.; Rosso, P.; Poesio, M. (2020). Fake Opinion Detection: How Similar are Crowdsourced Datasets to Real Data?. Language Resources and Evaluation. 54(4):1019-1058. https://doi.org/10.1007/s10579-020-09486-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10579-020-09486-5 es_ES
dc.description.upvformatpinicio 1019 es_ES
dc.description.upvformatpfin 1058 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\433811 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Economic and Social Research Council, Reino Unido es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.description.references Baeza-Yates, R. (2018). Bias on the web. Communications of the ACM, 61(6), 54–61. es_ES
dc.description.references Banerjee, S., & Chua, A. Y. (2014). Applauses in hotel reviews: Genuine or deceptive? In: Science and Information Conference (SAI), 2014 (pp. 938–942). New York: IEEE. es_ES
dc.description.references Bhargava, R., Baoni, A., & Sharma, Y. (2018). Composite sequential modeling for identifying fake reviews. Journal of Intelligent Systems,. https://doi.org/10.1515/jisys-2017-0501. es_ES
dc.description.references Bickel, P. J., & Doksum, K. A. (2015). Mathematical statistics: Basic ideas and selected topics (2nd ed., Vol. 1). Boca Raton: Chapman and Hall/CRC Press. es_ES
dc.description.references Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993–1022. es_ES
dc.description.references Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory (pp. 92–100). New York: ACM. es_ES
dc.description.references Cagnina, L. C., & Rosso, P. (2017). Detecting deceptive opinions: Intra and cross-domain classification using an efficient representation. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 25(Suppl. 2), 151–174. https://doi.org/10.1142/S0218488517400165. es_ES
dc.description.references Cardoso, E. F., Silva, R. M., & Almeida, T. A. (2018). Towards automatic filtering of fake reviews. Neurocomputing, 309, 106–116. https://doi.org/10.1016/j.neucom.2018.04.074. es_ES
dc.description.references Carpenter, B. (2008). Multilevel bayesian models of categorical data annotation. Retrieved from http://lingpipe.files.wordpress.com/2008/11/carp-bayesian-multilevel-annotation.pdf. es_ES
dc.description.references Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. es_ES
dc.description.references Costa, P. T., & MacCrae, R. R. (1992). Revised NEO personality inventory (NEO PI-R) and NEO five-factor inventory (NEO FFI): Professional manual. Psychological Assessment Resources. es_ES
dc.description.references Dawid, A. P., & Skene, A. M. (1979). Maximum likelihood estimation of observer error-rates using the EM algorithm. Applied Statistics, 28(1), 20–28. es_ES
dc.description.references Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38. es_ES
dc.description.references Elkan, C., & Noto, K. (2008). Learning classifiers from only positive and unlabeled data. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 213–220). New York: ACM. es_ES
dc.description.references Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., & Ghosh, R. (2013). Exploiting burstiness in reviews for review spammer detection. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media (Vol. 13, pp. 175–184). es_ES
dc.description.references Feng, S., Banerjee, R., & Choi, Y. (2012). Syntactic stylometry for deception detection. In: Proceedings of the 50th annual meeting of the association for computational linguistics (Vol. 2: Short Papers, pp. 171–175). Jeju Island: Association for Computational Linguistics. es_ES
dc.description.references Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3, 1289–1305. es_ES
dc.description.references Fornaciari, T., & Poesio, M. (2013). Automatic deception detection in Italian court cases. Artificial intelligence and law, 21(3), 303–340. https://doi.org/10.1007/s10506-013-9140-4. es_ES
dc.description.references Fornaciari, T., & Poesio, M. (2014). Identifying fake amazon reviews as learning from crowds. In: Proceedings of the 14th conference of the European chapter of the Association for Computational Linguistics (pp. 279–287). Gothenburg: Association for Computational Linguistics. Retrieved from http://www.aclweb.org/anthology/E14-1030. es_ES
dc.description.references Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models., Analytical methods for social research Cambridge: Cambridge University Press. es_ES
dc.description.references Graves, A., Jaitly, N., & Mohamed, A. R. (2013). Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE workshop on automatic speech recognition and understanding (ASRU) (pp. 273–278). New York: IEEE. es_ES
dc.description.references Hernández-Castañeda, Á., & Calvo, H. (2017). Deceptive text detection using continuous semantic space models. Intelligent Data Analysis, 21(3), 679–695. es_ES
dc.description.references Hernández Fusilier, D., Guzmán, R., Móntes y Gomez, M., & Rosso, P. (2013). Using pu-learning to detect deceptive opinion spam. In: Proc. of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis (pp. 38–45). es_ES
dc.description.references Hernández Fusilier, D., Montes-y Gómez, M., Rosso, P., & Cabrera, R. G. (2015). Detecting positive and negative deceptive opinions using pu-learning. Information Processing & Management, 51(4), 433–443. es_ES
dc.description.references Hovy, D. (2016). The enemy in your own camp: How well can we detect statistically-generated fake reviews–an adversarial study. In: The 54th annual meeting of the association for computational linguistics (p 351). es_ES
dc.description.references Jelinek, F., Lafferty, J. D., & Mercer, R. L. (1992). Basic methods of probabilistic context free grammars. Speech recognition and understanding (pp. 345–360). New York: Springer. es_ES
dc.description.references Jindal, N., & Liu, B. (2008). Opinion spam and analysis. In: Proceedings of the 2008 international conference on web search and data mining (pp. 219–230). New York: ACM. es_ES
dc.description.references Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machines in R. Journal of Statistical Software, 15(9), 1–28. es_ES
dc.description.references Kim, S., Lee, S., Park, D., & Kang, J. (2017). Constructing and evaluating a novel crowdsourcing-based paraphrased opinion spam dataset. In: Proceedings of the 26th international conference on world wide web (pp. 827–836). Geneva: International World Wide Web Conferences Steering Committee. es_ES
dc.description.references Li, F., Huang, M., Yang, Y., & Zhu, X. (2011). Learning to identify review spam. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 22(3), 2488–2493. es_ES
dc.description.references Li, H., Chen, Z., Liu, B., Wei, X., & Shao, J. (2014a). Spotting fake reviews via collective positive-unlabeled learning. In: 2014 IEEE international conference on data mining (ICDM) (pp. 899–904). New York: IEEE. es_ES
dc.description.references Li, H., Fei, G., Wang, S., Liu, B., Shao, W., Mukherjee, A., & Shao, J. (2017). Bimodal distribution and co-bursting in review spam detection. In: Proceedings of the 26th international conference on world wide web (pp. 1063–1072). Geneva: International World Wide Web Conferences Steering Committee. es_ES
dc.description.references Li, H., Liu, B., Mukherjee, A., & Shao, J. (2014b). Spotting fake reviews using positive-unlabeled learning. Computación y Sistemas, 18(3), 467–475. es_ES
dc.description.references Li, J., Ott, M., Cardie, C., & Hovy, E. H. (2014c). Towards a general rule for identifying deceptive opinion spam. In: ACL (Vol. 1, pp. 1566–1576). es_ES
dc.description.references Lin, C. H., Hsu, P. Y., Cheng, M. S., Lei, H. T., & Hsu, M. C. (2017). Identifying deceptive review comments with rumor and lie theories. In: International conference in swarm intelligence (pp. 412–420). New York: Springer. es_ES
dc.description.references Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled examples. In: Third IEEE international conference on data mining (pp. 179–186). New York: IEEE. es_ES
dc.description.references Liu, B., Lee, W. S., Yu, P. S., & Li, X. (2002). Partially supervised classification of text documents. ICML, 2, 387–394. es_ES
dc.description.references Martens, D., & Maalej, W. (2019). Towards understanding and detecting fake reviews in app stores. Empirical Software Engineering,. https://doi.org/10.1007/s10664-019-09706-9. es_ES
dc.description.references Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781. es_ES
dc.description.references Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., & Ghosh, R. (2013a). Spotting opinion spammers using behavioral footprints. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 632–640) New York: ACM. es_ES
dc.description.references Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013b). What yelp fake review filter might be doing? In: Proceedings of the seventh international AAAI conference on weblogs and social media. es_ES
dc.description.references Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D., & Marchetti, A. (2011). Divide and conquer: Crowdsourcing the creation of cross-lingual textual entailment corpora. In: Proceedings of the conference on empirical methods in natural language processing (pp. 670–679). Stroudsburg: Association for Computational Linguistics. es_ES
dc.description.references Ott, M., Cardie, C., & Hancock, J. T. (2013). Negative deceptive opinion spam. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 497–501). es_ES
dc.description.references Ott, M., Choi, Y., Cardie, C., & Hancock, J. (2011). Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual meeting of the association for computational linguistics: human language technologies (pp. 309–319). Portland, Oregon: Association for Computational Linguistics. es_ES
dc.description.references Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count (LIWC): LIWC2001. Mahwah: Lawrence Erlbaum Associates. es_ES
dc.description.references Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543). es_ES
dc.description.references Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., et al. (2010). Learning from crowds. Journal of Machine Learning Research, 11, 1297–1322. es_ES
dc.description.references Ren, Y., & Ji, D. (2017). Neural networks for deceptive opinion spam detection: An empirical study. Information Sciences, 385, 213–224. es_ES
dc.description.references Rout, J. K., Dalmia, A., Choo, K. K. R., Bakshi, S., & Jena, S. K. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE Access, 5(1), 1319–1327. es_ES
dc.description.references Saini, M., & Sharan, A. (2017). Ensemble learning to find deceptive reviews using personality traits and reviews specific features. Journal of Digital Information Management, 12(2), 84–94. es_ES
dc.description.references Salloum, W., Edwards, E., Ghaffarzadegan, S., Suendermann-Oeft, D., & Miller, M. (2017). Crowdsourced continuous improvement of medical speech recognition. In: The AAAI-17 workshop on crowdsourcing, deep learning, and artificial intelligence agents. es_ES
dc.description.references Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In: Proceedings of international conference on new methods in language processing. Retrieved from http://www.ims.uni-stuttgart.de/ftp/pub/corpora/tree-tagger1.pdf. es_ES
dc.description.references Shehnepoor, S., Salehi, M., Farahbakhsh, R., & Crespi, N. (2017). Netspam: A network-based spam detection framework for reviews in online social media. IEEE Transactions on Information Forensics and Security, 12(7), 1585–1595. es_ES
dc.description.references Skeppstedt, M., Peldszus, A., & Stede, M. (2018). More or less controlled elicitation of argumentative text: Enlarging a microtext corpus via crowdsourcing. In: Proceedings of the 5th workshop on argument mining (pp. 155–163). es_ES
dc.description.references Strapparava, C., & Mihalcea, R. (2009). The lie detector: Explorations in the automatic recognition of deceptive language. In: Proceedings of the 47th annual meeting of the association for computational linguistics and the 4th international joint conference on natural language processing. es_ES
dc.description.references Streitfeld, D. (August $$25{{\rm th}}$$, 2012). The best book reviews money can buy. The New York Times. es_ES
dc.description.references Whitehill, J., Wu, T., Bergsma, F., Movellan, J. R., & Ruvolo, P. L. (2009). Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. Advances in neural information processing systems (pp. 2035–2043). Cambridge: MIT Press. es_ES
dc.description.references Xie, S., Wang, G., Lin, S., & Yu, P. S. (2012). Review spam detection via temporal pattern discovery. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp 823–831). New York: ACM. es_ES
dc.description.references Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’99 (pp. 42–49). New York: ACM. es_ES
dc.description.references Zhang, W., Bu, C., Yoshida, T., & Zhang, S. (2016). Cospa: A co-training approach for spam review identification with support vector machine. Information, 7(1), 12. es_ES
dc.description.references Zhang, W., Du, Y., Yoshida, T., & Wang, Q. (2018). DRI-RCNN: An approach to deceptive review identification using recurrent convolutional neural network. Information Processing & Management, 54(4), 576–592. es_ES
dc.description.references Zhou, L., Shi, Y., & Zhang, D. (2008). A Statistical Language Modeling Approach to Online Deception Detection. IEEE Transactions on Knowledge and Data Engineering, 20(8), 1077–1081. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem