- -

Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vázquez-Lozano, J. Enrique es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.date.accessioned 2021-07-31T03:30:49Z
dc.date.available 2021-07-31T03:30:49Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 1863-8880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171118
dc.description This is the peer reviewed version of the following article: Vázquez-Lozano, J. E., Martínez, A., Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Reviews 2020, 14, 1900422, which has been published in final form at https://doi.org/10.1002/lpor.201900422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Chiral spectroscopy is a powerful technique enabling to identify optically the chirality of matter. So far, most experiments to check the chirality of matter or nanostructures have been performed through arrangements wherein both the optical excitation and detection are realized via circularly polarized light propagating in free space. However, for the sake of miniaturization, it would be desirable to perform chiral spectroscopy in photonic integrated platforms, with the additional benefit of massive parallel detection, low¿cost production, repeatability, and portability. Here it is shown that all¿dielectric photonic waveguides can support chiral modes under proper combination of fundamental eigenmodes. Two mainstream configurations are investigated: a dielectric wire with square cross section and a slotted waveguide. Three different scenarios in which such waveguides could be used for chiral detection are numerically analyzed: waveguides as near¿field probes, evanescent¿induced chiral fields, and chiroptical interaction in void slots. In all the cases, a metallic nanohelix is considered as a chiral probe, though all the approaches can be extended to other kinds of chiral nanostructures as well as matter. These results establish that chiral applications such as sensing and spectroscopy could be realized in standard integrated optics, in particular, with silicon-based technology. es_ES
dc.description.sponsorship The authors thank S. Lechago for valuable comments and technical support with the numerical simulations. This work was partially supported by funding from the European Commission Project THOR H2020-EU-829067. A.M. also acknowledges funding from Generalitat Valenciana (Grant No. PROMETEO/2019/123) and Spanish Ministry of Science, Innovation and Universities (Grant No. PRX18/00126). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Laser & Photonics Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chiral sensing es_ES
dc.subject Chiroptical spectroscopy es_ES
dc.subject Circular dichroism es_ES
dc.subject Integrated photonics es_ES
dc.subject Optical chirality es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/lpor.201900422 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/829067/EU/TeraHertz detection enabled by mOleculaR optomechanics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCIU//PRX18%2F00126/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APE%2F2018%2FA%2F010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F123/ES/NANOFOTONICA AVANZADA SOBRE SILICIO (AVANTI)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Vázquez-Lozano, JE.; Martínez Abietar, AJ. (2020). Toward Chiral Sensing and Spectroscopy Enabled by All-Dielectric Integrated Photonic Waveguides. Laser & Photonics Review. 14(9):1-12. https://doi.org/10.1002/lpor.201900422 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/lpor.201900422 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\416363 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references FDA’S policy statement for the development of new stereoisomeric drugs. (1992). Chirality, 4(5), 338-340. doi:10.1002/chir.530040513 es_ES
dc.description.references Hutt, A. J., & Tan, S. C. (1996). Drug Chirality and its Clinical Significance. Drugs, 52(Supplement 5), 1-12. doi:10.2165/00003495-199600525-00003 es_ES
dc.description.references Smith, S. W. (2009). Chiral Toxicology: It’s the Same Thing…Only Different. Toxicological Sciences, 110(1), 4-30. doi:10.1093/toxsci/kfp097 es_ES
dc.description.references Naaman, R., Paltiel, Y., & Waldeck, D. H. (2019). Chiral molecules and the electron spin. Nature Reviews Chemistry, 3(4), 250-260. doi:10.1038/s41570-019-0087-1 es_ES
dc.description.references Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., … Zoller, P. (2017). Chiral quantum optics. Nature, 541(7638), 473-480. doi:10.1038/nature21037 es_ES
dc.description.references Göhler, B., Hamelbeck, V., Markus, T. Z., Kettner, M., Hanne, G. F., Vager, Z., … Zacharias, H. (2011). Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science, 331(6019), 894-897. doi:10.1126/science.1199339 es_ES
dc.description.references Zhu, H., Yi, J., Li, M.-Y., Xiao, J., Zhang, L., Yang, C.-W., … Zhang, X. (2018). Observation of chiral phonons. Science, 359(6375), 579-582. doi:10.1126/science.aar2711 es_ES
dc.description.references Cameron, R. P., Barnett, S. M., & Yao, A. M. (2012). Optical helicity, optical spin and related quantities in electromagnetic theory. New Journal of Physics, 14(5), 053050. doi:10.1088/1367-2630/14/5/053050 es_ES
dc.description.references Alpeggiani, F., Bliokh, K. Y., Nori, F., & Kuipers, L. (2018). Electromagnetic Helicity in Complex Media. Physical Review Letters, 120(24). doi:10.1103/physrevlett.120.243605 es_ES
dc.description.references Tang, Y., & Cohen, A. E. (2010). Optical Chirality and Its Interaction with Matter. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.163901 es_ES
dc.description.references Bliokh, K. Y., & Nori, F. (2011). Characterizing optical chirality. Physical Review A, 83(2). doi:10.1103/physreva.83.021803 es_ES
dc.description.references Tang, Y., & Cohen, A. E. (2011). Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light. Science, 332(6027), 333-336. doi:10.1126/science.1202817 es_ES
dc.description.references Barron, L. D. (2004). Molecular Light Scattering and Optical Activity. doi:10.1017/cbo9780511535468 es_ES
dc.description.references Hassey, R., Swain, E. J., Hammer, N. I., Venkataraman, D., & Barnes, M. D. (2006). Probing the Chiroptical Response of a Single Molecule. Science, 314(5804), 1437-1439. doi:10.1126/science.1134231 es_ES
dc.description.references Hendry, E., Carpy, T., Johnston, J., Popland, M., Mikhaylovskiy, R. V., Lapthorn, A. J., … Kadodwala, M. (2010). Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotechnology, 5(11), 783-787. doi:10.1038/nnano.2010.209 es_ES
dc.description.references Rhee, H., Choi, J. S., Starling, D. J., Howell, J. C., & Cho, M. (2013). Amplifications in chiroptical spectroscopy, optical enantioselectivity, and weak value measurement. Chemical Science, 4(11), 4107. doi:10.1039/c3sc51255j es_ES
dc.description.references Ho, C.-S., Garcia-Etxarri, A., Zhao, Y., & Dionne, J. (2017). Enhancing Enantioselective Absorption Using Dielectric Nanospheres. ACS Photonics, 4(2), 197-203. doi:10.1021/acsphotonics.6b00701 es_ES
dc.description.references Vázquez-Lozano, J. E., & Martínez, A. (2018). Optical Chirality in Dispersive and Lossy Media. Physical Review Letters, 121(4). doi:10.1103/physrevlett.121.043901 es_ES
dc.description.references Schäferling, M. (2017). Chiral Nanophotonics. Springer Series in Optical Sciences. doi:10.1007/978-3-319-42264-0 es_ES
dc.description.references Lee, S., Yoo, S., & Park, Q.-H. (2017). Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics, 4(8), 2047-2052. doi:10.1021/acsphotonics.7b00479 es_ES
dc.description.references Barr, L. E., Horsley, S. A. R., Hooper, I. R., Eager, J. K., Gallagher, C. P., Hornett, S. M., … Hendry, E. (2018). Investigating the nature of chiral near-field interactions. Physical Review B, 97(15). doi:10.1103/physrevb.97.155418 es_ES
dc.description.references Collins, J. T., Kuppe, C., Hooper, D. C., Sibilia, C., Centini, M., & Valev, V. K. (2017). Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Advanced Optical Materials, 5(16), 1700182. doi:10.1002/adom.201700182 es_ES
dc.description.references Hentschel, M., Schäferling, M., Duan, X., Giessen, H., & Liu, N. (2017). Chiral plasmonics. Science Advances, 3(5). doi:10.1126/sciadv.1602735 es_ES
dc.description.references Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M., & Naik, R. R. (2010). Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano Letters, 10(4), 1374-1382. doi:10.1021/nl100010v es_ES
dc.description.references Zhao, Y., Askarpour, A. N., Sun, L., Shi, J., Li, X., & Alù, A. (2017). Chirality detection of enantiomers using twisted optical metamaterials. Nature Communications, 8(1). doi:10.1038/ncomms14180 es_ES
dc.description.references Kang, L., Ren, Q., & Werner, D. H. (2017). Leveraging Superchiral Light for Manipulation of Optical Chirality in the Near-Field of Plasmonic Metamaterials. ACS Photonics, 4(6), 1298-1305. doi:10.1021/acsphotonics.7b00057 es_ES
dc.description.references García-Etxarri, A., & Dionne, J. A. (2013). Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Physical Review B, 87(23). doi:10.1103/physrevb.87.235409 es_ES
dc.description.references Hendry, E., Mikhaylovskiy, R. V., Barron, L. D., Kadodwala, M., & Davis, T. J. (2012). Chiral Electromagnetic Fields Generated by Arrays of Nanoslits. Nano Letters, 12(7), 3640-3644. doi:10.1021/nl3012787 es_ES
dc.description.references Meinzer, N., Hendry, E., & Barnes, W. L. (2013). Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Physical Review B, 88(4). doi:10.1103/physrevb.88.041407 es_ES
dc.description.references Nesterov, M. L., Yin, X., Schäferling, M., Giessen, H., & Weiss, T. (2016). The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics, 3(4), 578-583. doi:10.1021/acsphotonics.5b00637 es_ES
dc.description.references J.Lasa‐Alonso D. R.Abujetas A.Nodar J. A.Dionne J. J.Sáenz G.Molina‐Terriza J.Aizpurua A.García‐Etxarri arXiv:2003.07653 [physics.optics] 2020. es_ES
dc.description.references Solomon, M. L., Hu, J., Lawrence, M., García-Etxarri, A., & Dionne, J. A. (2018). Enantiospecific Optical Enhancement of Chiral Sensing and Separation with Dielectric Metasurfaces. ACS Photonics, 6(1), 43-49. doi:10.1021/acsphotonics.8b01365 es_ES
dc.description.references Graf, F., Feis, J., Garcia-Santiago, X., Wegener, M., Rockstuhl, C., & Fernandez-Corbaton, I. (2019). Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules. ACS Photonics, 6(2), 482-491. doi:10.1021/acsphotonics.8b01454 es_ES
dc.description.references Hu, J., Lawrence, M., & Dionne, J. A. (2019). High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics, 7(1), 36-42. doi:10.1021/acsphotonics.9b01352 es_ES
dc.description.references Zhao, X., & Reinhard, B. M. (2019). Switchable Chiroptical Hot-Spots in Silicon Nanodisk Dimers. ACS Photonics, 6(8), 1981-1989. doi:10.1021/acsphotonics.9b00388 es_ES
dc.description.references Reyes Gómez, F., Oliveira, O. N., Albella, P., & Mejía-Salazar, J. R. (2020). Enhanced chiroptical activity with slotted high refractive index dielectric nanodisks. Physical Review B, 101(15). doi:10.1103/physrevb.101.155403 es_ES
dc.description.references Gómez, F. R., Mejía-Salazar, J. R., & Albella, P. (2019). All-Dielectric Chiral Metasurfaces Based on Crossed-Bowtie Nanoantennas. ACS Omega, 4(25), 21041-21047. doi:10.1021/acsomega.9b02381 es_ES
dc.description.references Mohammadi, E., Tsakmakidis, K. L., Askarpour, A. N., Dehkhoda, P., Tavakoli, A., & Altug, H. (2018). Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 5(7), 2669-2675. doi:10.1021/acsphotonics.8b00270 es_ES
dc.description.references Mohammadi, E., Tavakoli, A., Dehkhoda, P., Jahani, Y., Tsakmakidis, K. L., Tittl, A., & Altug, H. (2019). Accessible Superchiral Near-Fields Driven by Tailored Electric and Magnetic Resonances in All-Dielectric Nanostructures. ACS Photonics, 6(8), 1939-1946. doi:10.1021/acsphotonics.8b01767 es_ES
dc.description.references Pellegrini, G., Finazzi, M., Celebrano, M., Duò, L., & Biagioni, P. (2017). Chiral surface waves for enhanced circular dichroism. Physical Review B, 95(24). doi:10.1103/physrevb.95.241402 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Nie, X., Ryckeboer, E., Roelkens, G., & Baets, R. (2017). CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Optics Express, 25(8), A409. doi:10.1364/oe.25.00a409 es_ES
dc.description.references Petersen, J., Volz, J., & Rauschenbeutel, A. (2014). Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science, 346(6205), 67-71. doi:10.1126/science.1257671 es_ES
dc.description.references Coles, R. J., Price, D. M., Dixon, J. E., Royall, B., Clarke, E., Kok, P., … Makhonin, M. N. (2016). Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nature Communications, 7(1). doi:10.1038/ncomms11183 es_ES
dc.description.references Gong, S.-H., Alpeggiani, F., Sciacca, B., Garnett, E. C., & Kuipers, L. (2018). Nanoscale chiral valley-photon interface through optical spin-orbit coupling. Science, 359(6374), 443-447. doi:10.1126/science.aan8010 es_ES
dc.description.references Le Kien, F., Busch, T., Truong, V. G., & Nic Chormaic, S. (2017). Higher-order modes of vacuum-clad ultrathin optical fibers. Physical Review A, 96(2). doi:10.1103/physreva.96.023835 es_ES
dc.description.references Picardi, M. F., Bliokh, K. Y., Rodríguez-Fortuño, F. J., Alpeggiani, F., & Nori, F. (2018). Angular momenta, helicity, and other properties of dielectric-fiber and metallic-wire modes. Optica, 5(8), 1016. doi:10.1364/optica.5.001016 es_ES
dc.description.references Abujetas, D. R., & Sánchez-Gil, J. A. (2020). Spin Angular Momentum of Guided Light Induced by Transverse Confinement and Intrinsic Helicity. ACS Photonics, 7(2), 534-545. doi:10.1021/acsphotonics.0c00064 es_ES
dc.description.references Bliokh, K. Y., & Nori, F. (2012). Transverse spin of a surface polariton. Physical Review A, 85(6). doi:10.1103/physreva.85.061801 es_ES
dc.description.references Alizadeh, M. H., & Reinhard, B. M. (2015). Enhanced Optical Chirality through Locally Excited Surface Plasmon Polaritons. ACS Photonics, 2(7), 942-949. doi:10.1021/acsphotonics.5b00151 es_ES
dc.description.references Nechayev, S., Barczyk, R., Mick, U., & Banzer, P. (2019). Substrate-Induced Chirality in an Individual Nanostructure. ACS Photonics, 6(8), 1876-1881. doi:10.1021/acsphotonics.9b00748 es_ES
dc.description.references Petronijevic, E., & Sibilia, C. (2019). Enhanced Near-Field Chirality in Periodic Arrays of Si Nanowires for Chiral Sensing. Molecules, 24(5), 853. doi:10.3390/molecules24050853 es_ES
dc.description.references Romero-García, S., Merget, F., Zhong, F., Finkelstein, H., & Witzens, J. (2013). Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths. Optics Express, 21(12), 14036. doi:10.1364/oe.21.014036 es_ES
dc.description.references Espinosa-Soria, A., & Martinez, A. (2016). Transverse Spin and Spin-Orbit Coupling in Silicon Waveguides. IEEE Photonics Technology Letters, 28(14), 1561-1564. doi:10.1109/lpt.2016.2553841 es_ES
dc.description.references Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E., & Norris, D. J. (2018). Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 18(8), 4633-4640. doi:10.1021/acs.nanolett.8b00083 es_ES
dc.description.references Pfeiffer, M. H. P., Herkommer, C., Liu, J., Morais, T., Zervas, M., Geiselmann, M., & Kippenberg, T. J. (2018). Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 24(4), 1-11. doi:10.1109/jstqe.2018.2808258 es_ES
dc.description.references Almeida, V. R., Xu, Q., Barrios, C. A., & Lipson, M. (2004). Guiding and confining light in void nanostructure. Optics Letters, 29(11), 1209. doi:10.1364/ol.29.001209 es_ES
dc.description.references Barrios, C. A., Gylfason, K. B., Sánchez, B., Griol, A., Sohlström, H., Holgado, M., & Casquel, R. (2007). Slot-waveguide biochemical sensor. Optics Letters, 32(21), 3080. doi:10.1364/ol.32.003080 es_ES
dc.description.references Choi, J. S., & Cho, M. (2012). Limitations of a superchiral field. Physical Review A, 86(6). doi:10.1103/physreva.86.063834 es_ES
dc.description.references Kramer, C., Schäferling, M., Weiss, T., Giessen, H., & Brixner, T. (2017). Analytic Optimization of Near-Field Optical Chirality Enhancement. ACS Photonics, 4(2), 396-406. doi:10.1021/acsphotonics.6b00887 es_ES
dc.description.references Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., … Wegener, M. (2009). Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science, 325(5947), 1513-1515. doi:10.1126/science.1177031 es_ES
dc.description.references Gansel, J. K., Wegener, M., Burger, S., & Linden, S. (2010). Gold helix photonic metamaterials: A numerical parameter study. Optics Express, 18(2), 1059. doi:10.1364/oe.18.001059 es_ES
dc.description.references Yang, Z., Zhao, M., & Lu, P. (2011). Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials. Optics Express, 19(5), 4255. doi:10.1364/oe.19.004255 es_ES
dc.description.references Schäferling, M., Yin, X., Engheta, N., & Giessen, H. (2014). Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 1(6), 530-537. doi:10.1021/ph5000743 es_ES
dc.description.references Esposito, M., Tasco, V., Cuscunà, M., Todisco, F., Benedetti, A., Tarantini, I., … Passaseo, A. (2014). Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics, 2(1), 105-114. doi:10.1021/ph500318p es_ES
dc.description.references Ji, R., Wang, S.-W., Liu, X., Guo, H., & Lu, W. (2016). Hybrid Helix Metamaterials for Giant and Ultrawide Circular Dichroism. ACS Photonics, 3(12), 2368-2374. doi:10.1021/acsphotonics.6b00575 es_ES
dc.description.references Kosters, D., de Hoogh, A., Zeijlemaker, H., Acar, H., Rotenberg, N., & Kuipers, L. (2017). Core–Shell Plasmonic Nanohelices. ACS Photonics, 4(7), 1858-1863. doi:10.1021/acsphotonics.7b00496 es_ES
dc.description.references Woźniak, P., De Leon, I., Höflich, K., Haverkamp, C., Christiansen, S., Leuchs, G., & Banzer, P. (2018). Chiroptical response of a single plasmonic nanohelix. Optics Express, 26(15), 19275. doi:10.1364/oe.26.019275 es_ES
dc.description.references Höflich, K., Feichtner, T., Hansjürgen, E., Haverkamp, C., Kollmann, H., Lienau, C., & Silies, M. (2019). Resonant behavior of a single plasmonic helix. Optica, 6(9), 1098. doi:10.1364/optica.6.001098 es_ES
dc.description.references Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370 es_ES
dc.description.references Thiel, M., Decker, M., Deubel, M., Wegener, M., Linden, S., & von Freymann, G. (2007). Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals. Advanced Materials, 19(2), 207-210. doi:10.1002/adma.200601497 es_ES
dc.description.references Thiel, M., von Freymann, G., & Wegener, M. (2007). Layer-by-layer three-dimensional chiral photonic crystals. Optics Letters, 32(17), 2547. doi:10.1364/ol.32.002547 es_ES
dc.description.references Singh, H. J., & Ghosh, A. (2018). Large and Tunable Chiro-Optical Response with All Dielectric Helical Nanomaterials. ACS Photonics, 5(5), 1977-1985. doi:10.1021/acsphotonics.7b01455 es_ES
dc.description.references Espinosa-Soria, A., Griol, A., & Martínez, A. (2016). Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps. Optics Express, 24(9), 9592. doi:10.1364/oe.24.009592 es_ES
dc.description.references Espinosa-Soria, A., Pinilla-Cienfuegos, E., Díaz-Fernández, F. J., Griol, A., Martí, J., & Martínez, A. (2018). Coherent Control of a Plasmonic Nanoantenna Integrated on a Silicon Chip. ACS Photonics, 5(7), 2712-2717. doi:10.1021/acsphotonics.8b00447 es_ES
dc.description.references Yin, X., Schäferling, M., Metzger, B., & Giessen, H. (2013). Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Letters, 13(12), 6238-6243. doi:10.1021/nl403705k es_ES
dc.description.references Filippov, V. N., Kotov, O. I., & Nikolayev, V. M. (1990). Measurement of polarisation beat length in single-mode optical fibres with a polarisation modulator. Electronics Letters, 26(10), 658-660. doi:10.1049/el:19900431 es_ES
dc.description.references Zhang, Q., Hernandez, T., Smith, K. W., Hosseini Jebeli, S. A., Dai, A. X., Warning, L., … Link, S. (2019). Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science, 365(6460), 1475-1478. doi:10.1126/science.aax5415 es_ES
dc.description.references Schäferling, M., Engheta, N., Giessen, H., & Weiss, T. (2016). Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration. ACS Photonics, 3(6), 1076-1084. doi:10.1021/acsphotonics.6b00147 es_ES
dc.description.references García-Meca, C., Lechago, S., Brimont, A., Griol, A., Mas, S., Sánchez, L., … Martí, J. (2017). On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications, 6(9), e17053-e17053. doi:10.1038/lsa.2017.53 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem