dc.contributor.author |
Juárez, J. D.
|
es_ES |
dc.contributor.author |
Marco-Jiménez, Francisco
|
es_ES |
dc.contributor.author |
Talaván, A. M.
|
es_ES |
dc.contributor.author |
García-Domínguez, X.
|
es_ES |
dc.contributor.author |
Viudes-de-Castro, M. P.
|
es_ES |
dc.contributor.author |
Lavara, R.
|
es_ES |
dc.contributor.author |
Vicente Antón, José Salvador
|
es_ES |
dc.date.accessioned |
2021-07-31T03:30:55Z |
|
dc.date.available |
2021-07-31T03:30:55Z |
|
dc.date.issued |
2020-02 |
es_ES |
dc.identifier.issn |
1871-1413 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/171121 |
|
dc.description.abstract |
[EN] Males from a paternal line selected for growth traits were used to produce semen doses at insemination centres and farms in a breeding scheme for rabbit meat production. The aim of this study was to assess whether a program of selection by daily gain in fattening period changed the seminal traits, plasma and sperm proteome and the fertility of semen when used in artificial insemination. Thirty-nine males from a paternal line were obtained by re-derivation from vitrified embryos with a difference of 18 generations (G21V and G39V). Sperm production parameters, morphological traits, sperm motility parameters and viability were evaluated from ejaculates. Seminal plasma and sperm proteome of three pool ejaculates from 10 mature males of each group were analysed and semen doses were used to inseminate 311 females. Only the percentage of abnormal sperm showed significant differences, with G21V presenting fewer abnormal sperm than G39V (10.5 +/- 2.63 vs 23.8 +/- 1.98). The discriminant analysis (DA-PLS) showed a clear effect of the generation for plasma and sperm proteome. In seminal plasma, 643 proteins were reported and 64 proteins were differentially expressed, of which 56 were overexpressed in G39V (87.5%). Sperm proteome reported 1360 proteins with 132 differentially abundant proteins. Of the total, 89 proteins were overexpressed in G39V (67.4%). From the 64 and 132 differentially abundant proteins of plasma and sperm, 19 and 26 had a FC >1.5, 12 and 13 of them belonging to the Oryctolagus cuniculus taxonomy, respectively. Despite observing differences in important proteins related to capacitation, sperm motility or immunoprotection and consequently to the fertilization process (TMPRSS2, Serpin family, Farn71f1, ATPase H+ transporting accessory protein 2, carbonic anhydrase 2, UDP-glucose glycoprotein glucosyltransferase 2), no differences in fertility and prolificacy were detected when commercial seminal doses were used for insemination from both male groups. However, overabundance of KIAA1324 protein can be related to the increase in abnormal sperm after selection by growth rate. |
es_ES |
dc.description.sponsorship |
This research was supported by AGL2017-85162-C2-1-R research project funded by Ministerio de Economia, Industria y Competitividad (MICINN, Spain). X Garcia-Dominguez was supported by a research grant from MICINN (BES-2015-072429). English text version was revised by N. Macowan English Language Service. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Elsevier |
es_ES |
dc.relation.ispartof |
Livestock Science |
es_ES |
dc.rights |
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) |
es_ES |
dc.subject |
Sperm |
es_ES |
dc.subject |
Proteome |
es_ES |
dc.subject |
Growth rate |
es_ES |
dc.subject |
Selection |
es_ES |
dc.subject |
Rabbit |
es_ES |
dc.subject.classification |
BIOLOGIA ANIMAL |
es_ES |
dc.subject.classification |
PRODUCCION ANIMAL |
es_ES |
dc.title |
Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1016/j.livsci.2019.103894 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal |
es_ES |
dc.description.bibliographicCitation |
Juárez, JD.; Marco-Jiménez, F.; Talaván, AM.; García-Domínguez, X.; Viudes-De-Castro, MP.; Lavara, R.; Vicente Antón, JS. (2020). Evaluation by re-derivation of a paternal line after 18 generations on seminal traits, proteome and fertility. Livestock Science. 232:1-13. https://doi.org/10.1016/j.livsci.2019.103894 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1016/j.livsci.2019.103894 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
13 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
232 |
es_ES |
dc.relation.pasarela |
S\402572 |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Antalis, T. M., Bugge, T. H., & Wu, Q. (2011). Membrane-Anchored Serine Proteases in Health and Disease. Proteases in Health and Disease, 1-50. doi:10.1016/b978-0-12-385504-6.00001-4 |
es_ES |
dc.description.references |
Bezerra, M. J. B., Arruda-Alencar, J. M., Martins, J. A. M., Viana, A. G. A., Viana Neto, A. M., Rêgo, J. P. A., … Moura, A. A. (2019). Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology, 128, 156-166. doi:10.1016/j.theriogenology.2019.01.013 |
es_ES |
dc.description.references |
Brun, J.-M., Theau-Clément, M., & Bolet, G. (2002). The relationship between rabbit semen characteristics and reproductive performance after artificial insemination. Animal Reproduction Science, 70(1-2), 139-149. doi:10.1016/s0378-4320(01)00197-x |
es_ES |
dc.description.references |
Brun, J.-M., Theau-Clément, M., Esparbié, J., Falières, J., Saleil, G., & Larzul, C. (2006). Semen production in two rabbit lines divergently selected for 63-d body weight. Theriogenology, 66(9), 2165-2172. doi:10.1016/j.theriogenology.2006.07.004 |
es_ES |
dc.description.references |
Brun, J. M., Sanchez, A., Ailloud, E., Saleil, G., & Theau-Clément, M. (2016). Genetic parameters of rabbit semen traits and male fertilising ability. Animal Reproduction Science, 166, 15-21. doi:10.1016/j.anireprosci.2015.12.008 |
es_ES |
dc.description.references |
Bünger, L., Lewis, R. M., Rothschild, M. F., Blasco, A., Renne, U., & Simm, G. (2005). Relationships between quantitative and reproductive fitness traits in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1459), 1489-1502. doi:10.1098/rstb.2005.1679 |
es_ES |
dc.description.references |
Casares-Crespo, L., Fernández-Serrano, P., Vicente, J. S., Marco-Jiménez, F., & Viudes-de-Castro, M. P. (2018). Rabbit seminal plasma proteome: The importance of the genetic origin. Animal Reproduction Science, 189, 30-42. doi:10.1016/j.anireprosci.2017.12.004 |
es_ES |
dc.description.references |
Casares-Crespo, L., Fernández-Serrano, P., & Viudes-de-Castro, M. P. (2019). Proteomic characterization of rabbit (Oryctolagus cuniculus) sperm from two different genotypes. Theriogenology, 128, 140-148. doi:10.1016/j.theriogenology.2019.01.026 |
es_ES |
dc.description.references |
Castellini, C., Lattaioli, P., Moroni, M., & Minelli, A. (2000). Effect of seminal plasma on the characteristics and fertility of rabbit spermatozoa. Animal Reproduction Science, 63(3-4), 275-282. doi:10.1016/s0378-4320(00)00181-0 |
es_ES |
dc.description.references |
Castellini, C., Cardinali, R., Dal Bosco, A., Minelli, A., & Camici, O. (2006). Lipid composition of the main fractions of rabbit semen. Theriogenology, 65(4), 703-712. doi:10.1016/j.theriogenology.2005.05.053 |
es_ES |
dc.description.references |
Castellini, C., Mourvaki, E., Cardinali, R., Collodel, G., Lasagna, E., Del Vecchio, M. T., & Dal Bosco, A. (2012). Secretion patterns and effect of prostate-derived granules on the sperm acrosome reaction of rabbit buck. Theriogenology, 78(4), 715-723. doi:10.1016/j.theriogenology.2012.02.012 |
es_ES |
dc.description.references |
Courtens, J., Bolet, G., & Theau-Clément, M. (1994). Effect of acrosome defects and sperm chromatin decondensation on fertility and litter size in the rabbit. Preliminary electron-microscopic study. Reproduction Nutrition Development, 34(5), 427-437. doi:10.1051/rnd:19940504 |
es_ES |
dc.description.references |
Choucair, F., 2018. Unraveling the sperm transcriptome by nextgeneration sequencing and the global epigenetic and landscape in infertile men. Molecular Biology.Université Côted’ Azur; Université libanaise, NNT:2018AZUR4058. https://tel.archives-ouvertes.fr/tel-01958881. |
es_ES |
dc.description.references |
Davis, B. K., & Davis, N. V. (1983). Binding by glycoproteins of seminal plasma membrane vesicles accelerates decapacitation in rabbit spermatozoa. Biochimica et Biophysica Acta (BBA) - Biomembranes, 727(1), 70-76. doi:10.1016/0005-2736(83)90370-x |
es_ES |
dc.description.references |
Ellerman, D. A., Myles, D. G., & Primakoff, P. (2006). A Role for Sperm Surface Protein Disulfide Isomerase Activity in Gamete Fusion: Evidence for the Participation of ERp57. Developmental Cell, 10(6), 831-837. doi:10.1016/j.devcel.2006.03.011 |
es_ES |
dc.description.references |
Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527 |
es_ES |
dc.description.references |
García-Tomás, M., Sánchez, J., Rafel, O., Ramon, J., & Piles, M. (2006). Variability, repeatability and phenotypic relationships of several characteristics of production and semen quality in rabbit. Animal Reproduction Science, 93(1-2), 88-100. doi:10.1016/j.anireprosci.2005.06.011 |
es_ES |
dc.description.references |
García-Tomás, M., Sánchez, J., Rafel, O., Ramon, J., & Piles, M. (2006). Heterosis, direct and maternal genetic effects on semen quality traits of rabbits. Livestock Science, 100(2-3), 111-120. doi:10.1016/j.livprodsci.2005.08.004 |
es_ES |
dc.description.references |
Garénaux, E., Kanagawa, M., Tsuchiyama, T., Hori, K., Kanazawa, T., Goshima, A., … Kitajima, K. (2015). Discovery, Primary, and Crystal Structures and Capacitation-related Properties of a Prostate-derived Heparin-binding Protein WGA16 from Boar Sperm. Journal of Biological Chemistry, 290(9), 5484-5501. doi:10.1074/jbc.m114.635268 |
es_ES |
dc.description.references |
Gerena, R. L., Irikura, D., Urade, Y., Eguchi, N., Chapman, D. A., & Killian, G. J. (1998). Identification of a Fertility-Associated Protein in Bull Seminal Plasma As Lipocalin-Type Prostaglandin D Synthase1. Biology of Reproduction, 58(3), 826-833. doi:10.1095/biolreprod58.3.826 |
es_ES |
dc.description.references |
Gervasi, M. G., & Visconti, P. E. (2017). Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology, 5(2), 204-218. doi:10.1111/andr.12320 |
es_ES |
dc.description.references |
Jeyendran, R. S., Van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G., & Zaneveld, L. J. D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction, 70(1), 219-228. doi:10.1530/jrf.0.0700219 |
es_ES |
dc.description.references |
Kim, T. S., Heinlein, C., Hackman, R. C., & Nelson, P. S. (2006). Phenotypic Analysis of Mice Lacking the
Tmprss2
-Encoded Protease. Molecular and Cellular Biology, 26(3), 965-975. doi:10.1128/mcb.26.3.965-975.2006 |
es_ES |
dc.description.references |
Kwon, J. T., Ham, S., Jeon, S., Kim, Y., Oh, S., & Cho, C. (2017). Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice. PLOS ONE, 12(7), e0182038. doi:10.1371/journal.pone.0182038 |
es_ES |
dc.description.references |
Larzul, C., Gondret, F., Combes, S., & de Rochambeau, H. (2005). Divergent selection on 63-day body weight in the rabbit: response on growth, carcass and muscle traits. Genetics Selection Evolution, 37(1), 105. doi:10.1186/1297-9686-37-1-105 |
es_ES |
dc.description.references |
Lavara, R., Mocé, E., Lavara, F., Viudes de Castro, M. P., & Vicente, J. S. (2005). Do parameters of seminal quality correlate with the results of on-farm inseminations in rabbits? Theriogenology, 64(5), 1130-1141. doi:10.1016/j.theriogenology.2005.01.009 |
es_ES |
dc.description.references |
Lavara, R., Vicente, J. S., & Baselga, M. (2010). Genetic parameter estimates for semen production traits and growth rate of a paternal rabbit line. Journal of Animal Breeding and Genetics, 128(1), 44-51. doi:10.1111/j.1439-0388.2010.00889.x |
es_ES |
dc.description.references |
Lavara, R., Vicente, J. S., & Baselga, M. (2012). Estimation of genetic parameters for semen quality traits and growth rate in a paternal rabbit line. Theriogenology, 78(3), 567-575. doi:10.1016/j.theriogenology.2012.03.002 |
es_ES |
dc.description.references |
Lavara, R., Vicente, J. S., & Baselga, M. (2013). Genetic variation in head morphometry of rabbit sperm. Theriogenology, 80(4), 313-318. doi:10.1016/j.theriogenology.2013.04.015 |
es_ES |
dc.description.references |
Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., … Whisstock, J. C. (2006). Genome Biology, 7(5), 216. doi:10.1186/gb-2006-7-5-216 |
es_ES |
dc.description.references |
Leone, M. G., Haq, H. A., & Saso, L. (2002). Lipocalin type prostaglandin D-synthase: which role in male fertility? Contraception, 65(4), 293-295. doi:10.1016/s0010-7824(02)00280-9 |
es_ES |
dc.description.references |
Lestari, S. W., Miati, D. N., Seoharso, P., Sugiyanto, R., & Pujianto, D. A. (2017). Sperm Na+, K+-ATPase α4 and plasma membrane Ca2+-ATPase (PMCA) 4 regulation in asthenozoospermia. Systems Biology in Reproductive Medicine, 63(5), 294-302. doi:10.1080/19396368.2017.1348565 |
es_ES |
dc.description.references |
Liao, T.-T., Xiang, Z., Zhu, W.-B., & Fan, L.-Q. (2009). Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian Journal of Andrology, 11(6), 683-693. doi:10.1038/aja.2009.59 |
es_ES |
dc.description.references |
Llobat, L., Marco-Jiménez, F., Peñaranda, D., Thieme, R., Navarrete, A., & Vicente, J. (2011). mRNA Expression in Rabbit Blastocyst and Endometrial Tissue of Candidate Gene Involved in Gestational Losses. Reproduction in Domestic Animals, 47(2), 281-287. doi:10.1111/j.1439-0531.2011.01855.x |
es_ES |
dc.description.references |
Loveland, K., Major, A., Butler, R., Jans, D., Miyamoto, Y., & Young, J. (2015). Putting things in place for fertilization: discovering roles for importin proteins in cell fate and spermatogenesis. Asian Journal of Andrology, 17(4), 537. doi:10.4103/1008-682x.154310 |
es_ES |
dc.description.references |
Lukefahr, S. D., Odi, H. B., & Atakora, J. K. (1996). Mass selection for 70-day body weight in rabbits. Journal of Animal Science, 74(7), 1481. doi:10.2527/1996.7471481x |
es_ES |
dc.description.references |
Ma, Q., Li, Y., Luo, M., Guo, H., Lin, S., Chen, J., … Gui, Y. (2017). The expression characteristics of FAM71D and its association with sperm motility. Human Reproduction, 32(11), 2178-2187. doi:10.1093/humrep/dex290 |
es_ES |
dc.description.references |
Marai, I. F. ., Habeeb, A. A. ., & Gad, A. . (2002). Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: a review. Livestock Production Science, 78(2), 71-90. doi:10.1016/s0301-6226(02)00091-x |
es_ES |
dc.description.references |
Mocé, E., Vicente, J. S., & Lavara, R. (2003). Effect of freezing–thawing protocols on the performance of semen from three rabbit lines after artificial insemination. Theriogenology, 60(1), 115-123. doi:10.1016/s0093-691x(02)01329-8 |
es_ES |
dc.description.references |
Naturil-Alfonso, C., Lavara, R., Millán, P., Rebollar, P. G., Vicente, J. S., & Marco-Jiménez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016 |
es_ES |
dc.description.references |
Nizza, A., Di Meo, C., & Taranto, S. (2003). Effect of Collection Rhythms and Season on Rabbit Semen Production. Reproduction in Domestic Animals, 38(6), 436-439. doi:10.1046/j.1439-0531.2003.00458.x |
es_ES |
dc.description.references |
Osada, T., Watanabe, G., Kondo, S., Toyoda, M., Sakaki, Y., & Takeuchi, T. (2001). Male Reproductive Defects Caused by Puromycin-Sensitive Aminopeptidase Deficiency in Mice. Molecular Endocrinology, 15(6), 960-971. doi:10.1210/mend.15.6.0643 |
es_ES |
dc.description.references |
Pascual, J. J., García, C., Martínez, E., Mocé, E., & Vicente, J. S. (2004). Rearing management of rabbit males selected by high growth rate: the effect of diet and season on semen characteristics. Reproduction Nutrition Development, 44(1), 49-63. doi:10.1051/rnd:2004016 |
es_ES |
dc.description.references |
Pascual, J. J., Marco-Jiménez, F., Martínez-Paredes, E., Ródenas, L., Fabre, C., Juvero, M. A., & Cano, J. L. (2016). Feeding programs promoting daily feed intake stability in rabbit males reduce sperm abnormalities and improve fertility. Theriogenology, 86(3), 730-737. doi:10.1016/j.theriogenology.2016.02.026 |
es_ES |
dc.description.references |
Pérez-Patiño, C., Parrilla, I., Li, J., Barranco, I., Martínez, E. A., Rodriguez-Martínez, H., & Roca, J. (2019). The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Molecular & Cellular Proteomics, 18(1), 41-50. doi:10.1074/mcp.ra118.000840 |
es_ES |
dc.description.references |
Peralta-Arias, R. D., Vívenes, C. Y., Camejo, M. I., Piñero, S., Proverbio, T., Martínez, E., … Proverbio, F. (2015). ATPases, ion exchangers and human sperm motility. REPRODUCTION, 149(5), 475-484. doi:10.1530/rep-14-0471 |
es_ES |
dc.description.references |
Piles, M., & Tusell, L. (2011). Genetic correlation between growth and female and male contributions to fertility in rabbit. Journal of Animal Breeding and Genetics, 129(4), 298-305. doi:10.1111/j.1439-0388.2011.00975.x |
es_ES |
dc.description.references |
Piles, M., Mocé, M. L., Laborda, P., & Santacreu, M. A. (2013). Feasibility of selection for male contribution to embryo survival as a way of improving male reproductive performance and semen quality in rabbits1. Journal of Animal Science, 91(10), 4654-4658. doi:10.2527/jas.2013-6446 |
es_ES |
dc.description.references |
Rahman, M. S., Kwon, W.-S., & Pang, M.-G. (2017). Prediction of male fertility using capacitation-associated proteins in spermatozoa. Molecular Reproduction and Development, 84(9), 749-759. doi:10.1002/mrd.22810 |
es_ES |
dc.description.references |
Roca, J., Martínez, S., Orengo, J., Parrilla, I., Vázquez, J. M., & Martínez, E. A. (2005). Influence of constant long days on ejaculate parameters of rabbits reared under natural environment conditions of Mediterranean area. Livestock Production Science, 94(3), 169-177. doi:10.1016/j.livprodsci.2004.10.011 |
es_ES |
dc.description.references |
De Rochambeau, H., de la Fuente, L., Rouvier, R., & Ouhayoun, J. (1989). Sélection sur la vitesse de croissance post-sevrage chez le lapin. Genetics Selection Evolution, 21(4), 527. doi:10.1186/1297-9686-21-4-527 |
es_ES |
dc.description.references |
Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., … Quackenbush, J. (2003). TM4: A Free, Open-Source System for Microarray Data Management and Analysis. BioTechniques, 34(2), 374-378. doi:10.2144/03342mt01 |
es_ES |
dc.description.references |
Samanta, L., Parida, R., Dias, T. R., & Agarwal, A. (2018). The enigmatic seminal plasma: a proteomics insight from ejaculation to fertilization. Reproductive Biology and Endocrinology, 16(1). doi:10.1186/s12958-018-0358-6 |
es_ES |
dc.description.references |
Sabés-Alsina, M., Planell, N., Torres-Mejia, E., Taberner, E., Maya-Soriano, M. J., Tusell, L., … Lopez-Bejar, M. (2015). Daily exposure to summer circadian cycles affects spermatogenesis, but not fertility in an in vivo rabbit model. Theriogenology, 83(2), 246-252. doi:10.1016/j.theriogenology.2014.09.013 |
es_ES |
dc.description.references |
Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., … Mann, M. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440-14445. doi:10.1073/pnas.93.25.14440 |
es_ES |
dc.description.references |
Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., … Schaeffer, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Molecular & Cellular Proteomics, 6(9), 1638-1655. doi:10.1074/mcp.t600050-mcp200 |
es_ES |
dc.description.references |
Theau-Clément, M., Bolet, G., Sanchez, A., Saleil, G., & Brun, J. M. (2015). Some factors that influence semen characteristics in rabbits. Animal Reproduction Science, 157, 33-38. doi:10.1016/j.anireprosci.2015.03.011 |
es_ES |
dc.description.references |
Thundathil, J. C., Rajamanickam, G. D., & Kastelic, J. P. (2018). Na/K-ATPase and Regulation of Sperm Function. Animal Reproduction, 15(Suppl. 1), 711-720. doi:10.21451/1984-3143-ar2018-0024 |
es_ES |
dc.description.references |
Tusell, L., Legarra, A., García-Tomás, M., Rafel, O., Ramon, J., & Piles, M. (2012). Genetic basis of semen traits and their relationship with growth rate in rabbits1. Journal of Animal Science, 90(5), 1385-1397. doi:10.2527/jas.2011-4165 |
es_ES |
dc.description.references |
Vicente, J. (2004). Study of fertilising capacity of spermatozoa after heterospermic insemination in rabbit using DNA markers. Theriogenology, 61(7-8), 1357-1365. doi:10.1016/j.theriogenology.2003.08.009 |
es_ES |
dc.description.references |
Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019 |
es_ES |
dc.description.references |
Viudes-de-Castro, M. P., & Vicente, J. S. (1997). Effect of sperm count on the fertility and prolificity rates of meat rabbits. Animal Reproduction Science, 46(3-4), 313-319. doi:10.1016/s0378-4320(96)01628-4 |
es_ES |
dc.description.references |
Viudes-de-Castro, M. P., Mocé, E., Lavara, R., Marco-Jiménez, F., & Vicente, J. S. (2014). Aminopeptidase activity in seminal plasma and effect of dilution rate on rabbit reproductive performance after insemination with an extender supplemented with buserelin acetate. Theriogenology, 81(9), 1223-1228. doi:10.1016/j.theriogenology.2014.02.003 |
es_ES |
dc.description.references |
Viudes de Castro, M. P., Casares-Crespo, L., Monserrat-Martínez, A., & Vicente, J. S. (2015). Determination of enzyme activity in rabbit seminal plasma and its relationship with quality semen parameters. World Rabbit Science, 23(4), 247. doi:10.4995/wrs.2015.4064 |
es_ES |
dc.description.references |
Vizcaíno, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F., Ríos, D., … Hermjakob, H. (2014). ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nature Biotechnology, 32(3), 223-226. doi:10.1038/nbt.2839 |
es_ES |
dc.description.references |
Wandernoth, P. M., Mannowetz, N., Szczyrba, J., Grannemann, L., Wolf, A., Becker, H. M., … Wennemuth, G. (2015). Normal Fertility Requires the Expression of Carbonic Anhydrases II and IV in Sperm. Journal of Biological Chemistry, 290(49), 29202-29216. doi:10.1074/jbc.m115.698597 |
es_ES |
dc.description.references |
Weininger, R. B., Fisher, S., Rifkin, J., & Bedford, J. M. (1982). Experimental studies on the passage of specific IgG to the lumen of the rabbit epididymis. Reproduction, 66(1), 251-258. doi:10.1530/jrf.0.0660251 |
es_ES |
dc.description.references |
Yan, M., Zhang, X., Pu, Q., Huang, T., Xie, Q., Wang, Y., … Gu, J. (2016). Immunoglobulin G Expression in Human Sperm and Possible Functional Significance. Scientific Reports, 6(1). doi:10.1038/srep20166 |
es_ES |