- -

Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems

Mostrar el registro completo del ítem

Carricondo, JM.; Oliver Villanueva, JV.; Turegano Pastor, JV.; González Romero, JA.; Mengual Cuquerella, J. (2021). Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems. Environmental Technology. 42(19):3055-3064. https://doi.org/10.1080/09593330.2020.1720311

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171214

Ficheros en el ítem

Metadatos del ítem

Título: Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems
Autor: Carricondo, J. M. Oliver Villanueva, José Vicente Turegano Pastor, José Vicente González Romero, Juan Andrés Mengual Cuquerella, Jesús
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Fecha difusión:
Resumen:
[EN] Continuous phosphorus discharges in bodies of water, generated by human activities, such as agriculture, domestic effluences or wastewater from industrial processes, produce contaminated water and eutrophication. For ...[+]
Palabras clave: Phragmites australis , Wastewater , Phosphorous adsorption , Reed ash , Biomass
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Environmental Technology. (issn: 0959-3330 )
DOI: 10.1080/09593330.2020.1720311
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/09593330.2020.1720311
Descripción: This is an Author's Accepted Manuscript of an article published in J. M. Carricondo, J. V. Oliver-Villanueva, J. V. Turégano, J. A. González & J. Mengual (2021) Use of Phragmites australis for controlling phosphorus contamination in anthropogenic wetland ecosystems, Environmental Technology, 42:19, 3055-3064, DOI: 10.1080/09593330.2020.1720311 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/09593330.2020.1720311
Tipo: Artículo

References

Rodrigo, M. A., Valentín, A., Claros, J., Moreno, L., Segura, M., Lassalle, M., & Vera, P. (2018). Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecological Engineering, 113, 74-87. doi:10.1016/j.ecoleng.2017.11.021

Ahmad, S. S., Reshi, Z. A., Shah, M. A., Rashid, I., Ara, R., & Andrabi, S. M. A. (2014). Phytoremediation Potential ofPhragmites australisin Hokersar Wetland - A Ramsar Site of Kashmir Himalaya. International Journal of Phytoremediation, 16(12), 1183-1191. doi:10.1080/15226514.2013.821449

Chandra, R., & Yadav, S. (2011). Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution UsingPhragmites Cummunis, Typha AngustifoliaandCyperus Esculentus. International Journal of Phytoremediation, 13(6), 580-591. doi:10.1080/15226514.2010.495258 [+]
Rodrigo, M. A., Valentín, A., Claros, J., Moreno, L., Segura, M., Lassalle, M., & Vera, P. (2018). Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecological Engineering, 113, 74-87. doi:10.1016/j.ecoleng.2017.11.021

Ahmad, S. S., Reshi, Z. A., Shah, M. A., Rashid, I., Ara, R., & Andrabi, S. M. A. (2014). Phytoremediation Potential ofPhragmites australisin Hokersar Wetland - A Ramsar Site of Kashmir Himalaya. International Journal of Phytoremediation, 16(12), 1183-1191. doi:10.1080/15226514.2013.821449

Chandra, R., & Yadav, S. (2011). Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution UsingPhragmites Cummunis, Typha AngustifoliaandCyperus Esculentus. International Journal of Phytoremediation, 13(6), 580-591. doi:10.1080/15226514.2010.495258

Brix, H., Schierup, H.-H., & Arias, C. A. (2007). Twenty years experience with constructed wetland systems in Denmark – what did we learn? Water Science and Technology, 56(3), 63-68. doi:10.2166/wst.2007.522

Vybernaite-Lubiene, I., Zilius, M., Giordani, G., Petkuviene, J., Vaiciute, D., Bukaveckas, P. A., & Bartoli, M. (2017). Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuarine, Coastal and Shelf Science, 194, 217-228. doi:10.1016/j.ecss.2017.06.020

Del Barrio Fernández, P., Gómez, A. G., Alba, J. G., Díaz, C. Á., & Revilla Cortezón, J. A. (2012). A model for describing the eutrophication in a heavily regulated coastal lagoon. Application to the Albufera of Valencia (Spain). Journal of Environmental Management, 112, 340-352. doi:10.1016/j.jenvman.2012.08.019

Uddin, M. N., & Robinson, R. W. (2018). Can nutrient enrichment influence the invasion of Phragmites australis? Science of The Total Environment, 613-614, 1449-1459. doi:10.1016/j.scitotenv.2017.06.131

Ailstock, M. S., Norman, C. M., & Bushmann, P. J. (2001). Common ReedPhragmites australis: Control and Effects Upon Biodiversity in Freshwater Nontidal Wetlands. Restoration Ecology, 9(1), 49-59. doi:10.1046/j.1526-100x.2001.009001049.x

Coleman, H. M., & Levine, J. M. (2006). Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biological Invasions, 9(1), 65-71. doi:10.1007/s10530-006-9008-6

Farnsworth, E. J., & Meyerson, L. A. (2003). Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands, 23(4), 750-762. doi:10.1672/0277-5212(2003)023[0750:ceofwp]2.0.co;2

Holdredge, C., & Bertness, M. D. (2010). Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biological Invasions, 13(2), 423-433. doi:10.1007/s10530-010-9836-2

Verhoeven, J. T. A., & Setter, T. L. (2009). Agricultural use of wetlands: opportunities and limitations. Annals of Botany, 105(1), 155-163. doi:10.1093/aob/mcp172

Pinto, E., Almeida, A., & Ferreira, I. M. P. L. V. O. (2016). Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. Journal of Food Composition and Analysis, 48, 81-87. doi:10.1016/j.jfca.2016.02.008

Li, M., Liu, J., Xu, Y., & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews, 24(3), 319-332. doi:10.1139/er-2015-0080

Correll, D. L. (1998). The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 27(2), 261-266. doi:10.2134/jeq1998.00472425002700020004x

Sharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. Journal of Environmental Quality, 23(3), 437-451. doi:10.2134/jeq1994.00472425002300030006x

Maiga Y, von Sperling M, Mihelcic J. Constructed Wetlands. In: Rose JB and Jiménez-Cisneros B (eds) Global Water Pathogen Project. http://www.waterpathogens.org (Haas C, Mihelcic JR and Verbyla ME) (eds) Part 4 Management Of Risk from Excreta and Wastewater). http://www.waterpathogen 2017.

Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chemical Engineering Journal, 290, 232-242. doi:10.1016/j.cej.2015.12.108

Zhang, Y., Song, C., Ji, L., Liu, Y., Xiao, J., Cao, X., & Zhou, Y. (2018). Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of The Total Environment, 627, 1294-1302. doi:10.1016/j.scitotenv.2018.01.327

Rai, P. K. (2008). Heavy Metal Pollution in Aquatic Ecosystems and its Phytoremediation using Wetland Plants: An ecosustainable approach. International Journal of Phytoremediation, 10(2), 133-160. doi:10.1080/15226510801913918

Meuleman, A. F. M., Beekman, J. P., & Verhoeven, J. T. A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands, 22(4), 712-721. doi:10.1672/0277-5212(2002)022[0712:nranue]2.0.co;2

Važić, T., Svirčev, Z., Dulić, T., Krstić, K., & Obreht, I. (2015). Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renewable and Sustainable Energy Reviews, 48, 670-680. doi:10.1016/j.rser.2015.04.034

Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 29(5), 347-354. doi:10.1016/j.biombioe.2004.06.015

Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80-86. doi:10.1016/j.ecoenv.2014.10.034

Boluda, R., Andreu, V., Gilabert, M. A., & Sobrino, P. (1993). Relation between reflectance of rice crop and indices of pollution by heavy metals in soils of albufera natural park (Valencia, Spain). Soil Technology, 6(4), 351-363. doi:10.1016/0933-3630(93)90025-a

Yadav, D., Kapur, M., Kumar, P., & Mondal, M. K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, 94, 402-409. doi:10.1016/j.psep.2014.09.005

UGURLU, A. (1998). Phosphorus removal by fly ash. Environment International, 24(8), 911-918. doi:10.1016/s0160-4120(98)00079-8

Abbas, M. N. (2014). Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 55(4), 970-977. doi:10.1080/19443994.2014.922494

El-Sobky, E.-S. E. A. (2017). Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat ( Triticum aestivum L.). Annals of Agricultural Sciences, 62(1), 113-120. doi:10.1016/j.aoas.2017.05.007

Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., & Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, 95, 45-54. doi:10.1016/j.jclepro.2015.02.051

Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129, 673-680. doi:10.1016/j.jclepro.2016.03.088

Seliem, M. K., Komarneni, S., & Abu Khadra, M. R. (2016). Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous and Mesoporous Materials, 224, 51-57. doi:10.1016/j.micromeso.2015.11.011

Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327-363. doi:10.1016/j.pecs.2009.11.003

Langmuir, I. (1916). THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. Journal of the American Chemical Society, 38(11), 2221-2295. doi:10.1021/ja02268a002

Chen, Y., Wang, F., Duan, L., Yang, H., & Gao, J. (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222, 487-494. doi:10.1016/j.molliq.2016.07.090

Ma, Z., Li, Q., Yue, Q., Gao, B., Li, W., Xu, X., & Zhong, Q. (2011). Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw. Chemical Engineering Journal, 171(3), 1209-1217. doi:10.1016/j.cej.2011.05.027

Vassileva, P., & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. Journal of Hazardous Materials, 170(2-3), 948-953. doi:10.1016/j.jhazmat.2009.05.062

SHI, Z., LIU, F., & YAO, S. (2011). Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide. New Carbon Materials, 26(4), 299-306. doi:10.1016/s1872-5805(11)60083-8

Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F., … Huang, X. (2019). Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. Journal of Environmental Management, 231, 370-379. doi:10.1016/j.jenvman.2018.10.059

Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70-89. doi:10.1016/j.ecoleng.2009.08.003

Xia, P., Wang, X., Wang, X., Song, J., Wang, H., Zhang, J., & Zhao, J. (2016). Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿loaded diatomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 220-227. doi:10.1016/j.colsurfa.2016.05.101

Wong, A., Navarro, E. A., & Abril, A. J. (2013). Microalgal oil production for use in rice farms in Albufera (València) region. International Journal of Green Economics, 7(2), 181. doi:10.1504/ijge.2013.057437

Delivand, M. K., Barz, M., & Gheewala, S. H. (2011). Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy, 36(3), 1435-1441. doi:10.1016/j.energy.2011.01.026

Schiemenz, K., & Eichler-Löbermann, B. (2010). Biomass ashes and their phosphorus fertilizing effect on different crops. Nutrient Cycling in Agroecosystems, 87(3), 471-482. doi:10.1007/s10705-010-9353-9

Ahmed, M. J. (2017). Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecological Engineering, 102, 262-269. doi:10.1016/j.ecoleng.2017.01.047

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem