Mostrar el registro sencillo del ítem
dc.contributor.author | Gisbert-Roca, Fernando | es_ES |
dc.contributor.author | Garcia-Bernabe, Abel | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.contributor.author | Martínez-Ramos, Cristina | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.date.accessioned | 2021-09-02T03:31:49Z | |
dc.date.available | 2021-09-02T03:31:49Z | |
dc.date.issued | 2021-02 | es_ES |
dc.identifier.issn | 1438-7492 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/171223 | |
dc.description | This is the peer reviewed version of the following article: Gisbert, F., García-Bernabé, A., Compañ, V., Martínez-Ramos, C., Monleón, M., Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromol. Mater. Eng. 2021, 306, 2000584, which has been published in final form at https://doi.org/10.1002/mame.202000584. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] The production of electroconductive nanofiber membranes made from polylactic acid (PLA) coated with polypyrrole (PPy) is investigated, performing a scanning of different reaction parameters and studying their physicochemical and dielectric properties. Depending on PPy content, a transition between conduction mechanisms is observed, with a temperature-dependent relaxation process for samples without PPy, a temperature-independent conduction process for samples with high contents of PPy and a combination of both processes for samples with low contents of PPy. A homogeneous and continuous coating is achieved from 23 wt% PPy, observing a percolation effect around 27 wt% PPy. Higher wt% PPy allow to obtain higher conductivities, but PPy aggregates appear from 34% wt% PPy. The high conductivity values obtained for electrospun membranes both through-plane and in-plane (above 0.05 and 0.20 S cm¿1, respectively, at room temperature) for the highest wt% of PPy, their porous structure with high specific surface area and their thermal stability below 140 °C make them candidates for many potential applications as solid polymer electrolytes in, for example, batteries, supercapacitors, sensors, photosensors, or polymer electrolyte membrane fuel cells (PEMFCs). In addition, the biocompatibility of PLA-PPy membranes expand their potential applications also in the field of tissue engineering and implantable devices. | es_ES |
dc.description.sponsorship | The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges the scholarship FPU16/01833 of the Spanish Ministry of Universities. The authors thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation | AGENCIA ESTATAL DE INVESTIGACION/DPI2015-72863-EXP | es_ES |
dc.relation.ispartof | Macromolecular Materials and Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Dielectric properties | es_ES |
dc.subject | Ion exchangers | es_ES |
dc.subject | Membranes | es_ES |
dc.subject | Polyelectrolytes | es_ES |
dc.subject | Polypyrroles | es_ES |
dc.subject.classification | TERMODINAMICA APLICADA (UPV) | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mame.202000584 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F01833/ES/FPU16%2F01833/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095872-B-C22/ES/NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES DE LA MEDULA ESPINAL./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Gisbert-Roca, F.; Garcia-Bernabe, A.; Compañ Moreno, V.; Martínez-Ramos, C.; Monleón Pradas, M. (2021). Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromolecular Materials and Engineering. 306(2):1-14. https://doi.org/10.1002/mame.202000584 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mame.202000584 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 306 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\424378 | es_ES |
dc.contributor.funder | MINISTERIO DE EDUCACION | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | McNeill, R., Siudak, R., Wardlaw, J., & Weiss, D. (1963). Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Australian Journal of Chemistry, 16(6), 1056. doi:10.1071/ch9631056 | es_ES |
dc.description.references | Bolto, B., & Weiss, D. (1963). Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential. Australian Journal of Chemistry, 16(6), 1076. doi:10.1071/ch9631076 | es_ES |
dc.description.references | Bolto, B., McNeill, R., & Weiss, D. (1963). Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Australian Journal of Chemistry, 16(6), 1090. doi:10.1071/ch9631090 | es_ES |
dc.description.references | McNeill, R., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. IV. Polymers from imidazole and pyridine. Australian Journal of Chemistry, 18(4), 477. doi:10.1071/ch9650477 | es_ES |
dc.description.references | Bolto, B., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. V. Aromatic semiconducting polymers. Australian Journal of Chemistry, 18(4), 487. doi:10.1071/ch9650487 | es_ES |
dc.description.references | Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578. doi:10.1039/c39770000578 | es_ES |
dc.description.references | Hammache, H., Makhloufi, L., & Saidani, B. (2003). Corrosion protection of iron by polypyrrole modified by copper using the cementation process. Corrosion Science, 45(9), 2031-2042. doi:10.1016/s0010-938x(03)00043-x | es_ES |
dc.description.references | Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002 | es_ES |
dc.description.references | CAREEM, M. (2004). Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics, 175(1-4), 725-728. doi:10.1016/j.ssi.2004.01.080 | es_ES |
dc.description.references | Ge, D., Tian, X., Qi, R., Huang, S., Mu, J., Hong, S., … Shi, W. (2009). A polypyrrole-based microchip for controlled drug release. Electrochimica Acta, 55(1), 271-275. doi:10.1016/j.electacta.2009.08.049 | es_ES |
dc.description.references | Sharma, R. K., Rastogi, A. C., & Desu, S. B. (2008). Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications, 10(2), 268-272. doi:10.1016/j.elecom.2007.12.004 | es_ES |
dc.description.references | Rubio Retama, J., López Cabarcos, E., Mecerreyes, D., & López-Ruiz, B. (2004). Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 20(6), 1111-1117. doi:10.1016/j.bios.2004.05.018 | es_ES |
dc.description.references | Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1 | es_ES |
dc.description.references | Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124a | es_ES |
dc.description.references | Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681c | es_ES |
dc.description.references | Brahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). DESIGN AND CHARACTERIZATION OF A GALACTOSE BIOSENSOR USING A NOVEL POLYPYRROLE-HYDROGEL COMPOSITE MEMBRANE. Analytical Letters, 35(5), 797-812. doi:10.1081/al-120004070 | es_ES |
dc.description.references | Jun, H.-K., Hoh, Y.-S., Lee, B.-S., Lee, S.-T., Lim, J.-O., Lee, D.-D., & Huh, J.-S. (2003). Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors and Actuators B: Chemical, 96(3), 576-581. doi:10.1016/j.snb.2003.06.002 | es_ES |
dc.description.references | Kisiel, A., Mazur, M., Kuśnieruk, S., Kijewska, K., Krysiński, P., & Michalska, A. (2010). Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 12(11), 1568-1571. doi:10.1016/j.elecom.2010.08.035 | es_ES |
dc.description.references | Yamamoto, H., Fukuda, M., Isa, I., & Yoshino, K. (1993). Tantalum electrolytic capacitor employing polypyrrole as solid electrolyte. Electronics and Communications in Japan (Part II: Electronics), 76(6), 88-98. doi:10.1002/ecjb.4420760610 | es_ES |
dc.description.references | Yamamoto, H., Oshima, M., Fukuda, M., Isa, I., & Yoshino, K. (1996). Characteristics of aluminium solid electrolytic capacitors using a conducting polymer. Journal of Power Sources, 60(2), 173-177. doi:10.1016/s0378-7753(96)80007-3 | es_ES |
dc.description.references | Sultana, I., Rahman, M. M., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 83, 209-215. doi:10.1016/j.electacta.2012.08.043 | es_ES |
dc.description.references | Xia, J., Chen, L., & Yanagida, S. (2011). Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 21(12), 4644. doi:10.1039/c0jm04116e | es_ES |
dc.description.references | Almuntaser, F. M. A., Majumder, S., Baviskar, P. K., Sali, J. V., & Sankapal, B. R. (2017). Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A, 123(8). doi:10.1007/s00339-017-1131-y | es_ES |
dc.description.references | Hao, D., Xu, B., & Cai, Z. (2018). Polypyrrole coated knitted fabric for robust wearable sensor and heater. Journal of Materials Science: Materials in Electronics, 29(11), 9218-9226. doi:10.1007/s10854-018-8950-2 | es_ES |
dc.description.references | Lima, R. M. A. P., Alcaraz-Espinoza, J. J., da Silva, F. A. G., & de Oliveira, H. P. (2018). Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 10(16), 13783-13795. doi:10.1021/acsami.8b04695 | es_ES |
dc.description.references | Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., … Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13(8), 577-583. doi:10.1002/pat.227 | es_ES |
dc.description.references | Håkansson, E., Amiet, A., Nahavandi, S., & Kaynak, A. (2007). Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. European Polymer Journal, 43(1), 205-213. doi:10.1016/j.eurpolymj.2006.10.001 | es_ES |
dc.description.references | Zhao, H., Li, L., Yang, J., & Zhang, Y. (2008). Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. Journal of Power Sources, 184(2), 375-380. doi:10.1016/j.jpowsour.2008.03.024 | es_ES |
dc.description.references | Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. doi:10.1016/j.apcatb.2009.09.014 | es_ES |
dc.description.references | Park, H., Kim, Y., Choi, Y. S., Hong, W. H., & Jung, D. (2008). Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. Journal of Power Sources, 178(2), 610-619. doi:10.1016/j.jpowsour.2007.08.050 | es_ES |
dc.description.references | Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 25(6), 1516-1520. doi:10.1016/j.bios.2009.10.009 | es_ES |
dc.description.references | Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042 | es_ES |
dc.description.references | Zhou, H., Liu, Z., Liu, X., & Chen, Q. (2016). Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury. Neural Regeneration Research, 11(1), 107. doi:10.4103/1673-5374.175054 | es_ES |
dc.description.references | Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008 | es_ES |
dc.description.references | George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037 | es_ES |
dc.description.references | Uyar, T., Toppare, L., & Hacaloglu, J. (2001). PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science, Part A, 38(11), 1141-1150. doi:10.1081/ma-100107134 | es_ES |
dc.description.references | Zinger, B., Shaier, P., & Zemel, A. (1991). Flexible polypyrrole/ClO4 films formed in aqueous solutions. Synthetic Metals, 40(3), 283-297. doi:10.1016/0379-6779(91)92070-x | es_ES |
dc.description.references | Peres, R. C. D., Juliano, V. F., De Paoli, M.-A., Panero, S., & Scrosati, B. (1993). Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 38(7), 869-876. doi:10.1016/0013-4686(93)87003-v | es_ES |
dc.description.references | De Paoli, M.-A., Peres, R. C. D., Panero, S., & Scrosati, B. (1992). Properties of electrochemically synthesized polymer electrodes—X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 37(7), 1173-1182. doi:10.1016/0013-4686(92)85053-n | es_ES |
dc.description.references | Lim, H. K., Lee, S. O., Song, K. J., Kim, S. G., & Kim, K. H. (2005). Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol). Journal of Applied Polymer Science, 97(3), 1170-1175. doi:10.1002/app.21824 | es_ES |
dc.description.references | Carragher, U., & Breslin, C. B. (2018). Polypyrrole doped with dodecylbenzene sulfonate as a protective coating for copper. Electrochimica Acta, 291, 362-372. doi:10.1016/j.electacta.2018.08.155 | es_ES |
dc.description.references | Arribas, C., & Rueda, D. (1996). Preparation of conductive polypyrrole-polystyrene sulfonate by chemical polymerization. Synthetic Metals, 79(1), 23-26. doi:10.1016/0379-6779(96)80125-1 | es_ES |
dc.description.references | Wu, T.-M., Chang, H.-L., & Lin, Y.-W. (2009). Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polymer International, 58(9), 1065-1070. doi:10.1002/pi.2634 | es_ES |
dc.description.references | Jin, C., Yang, F., & Yang, W. (2006). Electropolymerization and ion exchange properties of a polypyrrole film doped bypara-toluene sulfonate. Journal of Applied Polymer Science, 101(4), 2518-2522. doi:10.1002/app.23775 | es_ES |
dc.description.references | Kaynak, A. (2009). Decay of electrical conductivity in p-toluene sulfonate doped polypyrrole films. Fibers and Polymers, 10(5), 590-593. doi:10.1007/s12221-010-0590-y | es_ES |
dc.description.references | Samuelson, L. A., & Druy, M. A. (1986). Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules, 19(3), 824-828. doi:10.1021/ma00157a057 | es_ES |
dc.description.references | Hou, H., Yu, C., Liu, X., Yao, Y., Liao, Q., Dai, Z., & Li, D. (2018). Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode. Surface Innovations, 6(3), 159-166. doi:10.1680/jsuin.17.00068 | es_ES |
dc.description.references | Sultana, I., Rahman, M. M., Li, S., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 60, 201-205. doi:10.1016/j.electacta.2011.11.037 | es_ES |
dc.description.references | Jérôme, C., Martinot, L., Strivay, D., Weber, G., & Jérôme, R. (2001). Controlled exchange of metallic cations by polypyrrole-based resins. Synthetic Metals, 118(1-3), 45-55. doi:10.1016/s0379-6779(00)00275-7 | es_ES |
dc.description.references | Zhao, H., Price, W. E., Too, C. O., Wallace, G. G., & Zhou, D. (1996). Parameters influencing transport across conducting electroactive polymer membranes. Journal of Membrane Science, 119(2), 199-212. doi:10.1016/0376-7388(96)00130-5 | es_ES |
dc.description.references | Ansari Khalkhali, R., Price, W. ., & Wallace, G. . (2003). Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. Reactive and Functional Polymers, 56(3), 141-146. doi:10.1016/s1381-5148(03)00055-5 | es_ES |
dc.description.references | Pyo, M., Reynolds, J. R., Warren, L. F., & Marcy, H. O. (1994). Long-term redox switching stability of polypyrrole. Synthetic Metals, 68(1), 71-77. doi:10.1016/0379-6779(94)90149-x | es_ES |
dc.description.references | Murray, P., Spinks, G. M., Wallace, G. G., & Burford, R. P. (1997). In-situ mechanical properties of tosylate doped (pts) polypyrrole. Synthetic Metals, 84(1-3), 847-848. doi:10.1016/s0379-6779(96)04177-x | es_ES |
dc.description.references | Chengyou, J., & Fenglin, Y. (2006). Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions. Sensors and Actuators B: Chemical, 114(2), 737-739. doi:10.1016/j.snb.2005.06.026 | es_ES |
dc.description.references | Li, S., Qiu, Y., & Guo, X. (2009). Influence of doping anions on the ion exchange behavior of polypyrrole. Journal of Applied Polymer Science, 114(4), 2307-2314. doi:10.1002/app.30721 | es_ES |
dc.description.references | Raudsepp, T., Marandi, M., Tamm, T., Sammelselg, V., & Tamm, J. (2014). Influence of ion-exchange on the electrochemical properties of polypyrrole films. Electrochimica Acta, 122, 79-86. doi:10.1016/j.electacta.2013.08.083 | es_ES |
dc.description.references | Syritski, V., Öpik, A., & Forsén, O. (2003). Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochimica Acta, 48(10), 1409-1417. doi:10.1016/s0013-4686(03)00018-5 | es_ES |
dc.description.references | Fang, Y., Liu, J., Yu, D. J., Wicksted, J. P., Kalkan, K., Topal, C. O., … Li, J. (2010). Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources, 195(2), 674-679. doi:10.1016/j.jpowsour.2009.07.033 | es_ES |
dc.description.references | Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L., & Shen, J. (2014). Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 58, 237-241. doi:10.1016/j.bios.2014.02.081 | es_ES |
dc.description.references | Zhang, J., & Zhao, X. S. (2012). Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C, 116(9), 5420-5426. doi:10.1021/jp211474e | es_ES |
dc.description.references | Li, W., Zhang, Q., Zheng, G., Seh, Z. W., Yao, H., & Cui, Y. (2013). Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 13(11), 5534-5540. doi:10.1021/nl403130h | es_ES |
dc.description.references | Zhu, C., Zhai, J., Wen, D., & Dong, S. (2012). Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. Journal of Materials Chemistry, 22(13), 6300. doi:10.1039/c2jm16699b | es_ES |
dc.description.references | Ding, C., Qian, X., Yu, G., & An, X. (2010). Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose, 17(6), 1067-1077. doi:10.1007/s10570-010-9442-6 | es_ES |
dc.description.references | Yuan, L., Yao, B., Hu, B., Huo, K., Chen, W., & Zhou, J. (2013). Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 6(2), 470. doi:10.1039/c2ee23977a | es_ES |
dc.description.references | Lu, Y., Tao, P., Zhang, N., & Nie, S. (2020). Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Carbohydrate Polymers, 245, 116463. doi:10.1016/j.carbpol.2020.116463 | es_ES |
dc.description.references | Zhang, Y., Hao, N., Lin, X., & Nie, S. (2020). Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydrate Polymers, 234, 115888. doi:10.1016/j.carbpol.2020.115888 | es_ES |
dc.description.references | Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of Conductive Polypyrrole/Polyurethane Composite Foams by In situ Polymerization of Pyrrole. Chemistry of Materials, 20(7), 2574-2582. doi:10.1021/cm800005r | es_ES |
dc.description.references | Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1 | es_ES |
dc.description.references | Mróz, P., Białas, S., Mucha, M., & Kaczmarek, H. (2013). Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 573, 186-192. doi:10.1016/j.tca.2013.09.012 | es_ES |
dc.description.references | Araque-Monrós, M. C., Vidaurre, A., Gil-Santos, L., Gironés Bernabé, S., Monleón-Pradas, M., & Más-Estellés, J. (2013). Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polymer Degradation and Stability, 98(9), 1563-1570. doi:10.1016/j.polymdegradstab.2013.06.031 | es_ES |
dc.description.references | Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012 | es_ES |
dc.description.references | Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010 | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435 | es_ES |
dc.description.references | Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2011). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. doi:10.1177/0892705711423291 | es_ES |
dc.description.references | Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093 | es_ES |
dc.description.references | Chitte, H. K., Shinde, G. N., Bhat, N. V., & Walunj, V. E. (2011). Synthesis of Polypyrrole Using Ferric Chloride (FeCl<sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology, 01(02), 47-56. doi:10.4236/jst.2011.12007 | es_ES |
dc.description.references | Uyar, T., Toppare, L., & Hacaloğlu, J. (2002). Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 64(1), 1-13. doi:10.1016/s0165-2370(01)00166-8 | es_ES |
dc.description.references | Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 | es_ES |
dc.description.references | Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3 | es_ES |
dc.description.references | Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 | es_ES |
dc.description.references | Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 | es_ES |
dc.description.references | Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 | es_ES |
dc.description.references | Chronakis, I. S., Grapenson, S., & Jakob, A. (2006). Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer, 47(5), 1597-1603. doi:10.1016/j.polymer.2006.01.032 | es_ES |
dc.description.references | Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957 | es_ES |
dc.description.references | Bashir, T., Shakoor, A., Ahmed, E., Niaz, N. A., Iqbal, S., Akhtar, M. S., & Malik, M. A. (2017). Magnetic, Electrical and Thermal Studies of Polypyrrole-Fe2O3 Nanocomposites. Polymer Science, Series A, 59(6), 902-908. doi:10.1134/s0965545x17060013 | es_ES |
dc.description.references | Khan, A. A., Hussain, R., & Shaheen, S. (2016). Electrical conductivity and acetaldehyde vapour sensing studies on synthetic polypyrrole–titanium(iv)sulphosalicylophosphate nanocomposite cation exchange material. New Journal of Chemistry, 40(3), 2200-2210. doi:10.1039/c5nj03129j | es_ES |