- -

Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gisbert-Roca, Fernando es_ES
dc.contributor.author Garcia-Bernabe, Abel es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.date.accessioned 2021-09-02T03:31:49Z
dc.date.available 2021-09-02T03:31:49Z
dc.date.issued 2021-02 es_ES
dc.identifier.issn 1438-7492 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171223
dc.description This is the peer reviewed version of the following article: Gisbert, F., García-Bernabé, A., Compañ, V., Martínez-Ramos, C., Monleón, M., Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromol. Mater. Eng. 2021, 306, 2000584, which has been published in final form at https://doi.org/10.1002/mame.202000584. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] The production of electroconductive nanofiber membranes made from polylactic acid (PLA) coated with polypyrrole (PPy) is investigated, performing a scanning of different reaction parameters and studying their physicochemical and dielectric properties. Depending on PPy content, a transition between conduction mechanisms is observed, with a temperature-dependent relaxation process for samples without PPy, a temperature-independent conduction process for samples with high contents of PPy and a combination of both processes for samples with low contents of PPy. A homogeneous and continuous coating is achieved from 23 wt% PPy, observing a percolation effect around 27 wt% PPy. Higher wt% PPy allow to obtain higher conductivities, but PPy aggregates appear from 34% wt% PPy. The high conductivity values obtained for electrospun membranes both through-plane and in-plane (above 0.05 and 0.20 S cm¿1, respectively, at room temperature) for the highest wt% of PPy, their porous structure with high specific surface area and their thermal stability below 140 °C make them candidates for many potential applications as solid polymer electrolytes in, for example, batteries, supercapacitors, sensors, photosensors, or polymer electrolyte membrane fuel cells (PEMFCs). In addition, the biocompatibility of PLA-PPy membranes expand their potential applications also in the field of tissue engineering and implantable devices. es_ES
dc.description.sponsorship The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges the scholarship FPU16/01833 of the Spanish Ministry of Universities. The authors thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation AGENCIA ESTATAL DE INVESTIGACION/DPI2015-72863-EXP es_ES
dc.relation.ispartof Macromolecular Materials and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dielectric properties es_ES
dc.subject Ion exchangers es_ES
dc.subject Membranes es_ES
dc.subject Polyelectrolytes es_ES
dc.subject Polypyrroles es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mame.202000584 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F01833/ES/FPU16%2F01833/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095872-B-C22/ES/NUEVO DISPOSITIVO BIOACTIVO PARA LA REGENERACION DE LESIONES DE LA MEDULA ESPINAL./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gisbert-Roca, F.; Garcia-Bernabe, A.; Compañ Moreno, V.; Martínez-Ramos, C.; Monleón Pradas, M. (2021). Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromolecular Materials and Engineering. 306(2):1-14. https://doi.org/10.1002/mame.202000584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mame.202000584 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 306 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\424378 es_ES
dc.contributor.funder MINISTERIO DE EDUCACION es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references McNeill, R., Siudak, R., Wardlaw, J., & Weiss, D. (1963). Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Australian Journal of Chemistry, 16(6), 1056. doi:10.1071/ch9631056 es_ES
dc.description.references Bolto, B., & Weiss, D. (1963). Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential. Australian Journal of Chemistry, 16(6), 1076. doi:10.1071/ch9631076 es_ES
dc.description.references Bolto, B., McNeill, R., & Weiss, D. (1963). Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Australian Journal of Chemistry, 16(6), 1090. doi:10.1071/ch9631090 es_ES
dc.description.references McNeill, R., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. IV. Polymers from imidazole and pyridine. Australian Journal of Chemistry, 18(4), 477. doi:10.1071/ch9650477 es_ES
dc.description.references Bolto, B., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. V. Aromatic semiconducting polymers. Australian Journal of Chemistry, 18(4), 487. doi:10.1071/ch9650487 es_ES
dc.description.references Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578. doi:10.1039/c39770000578 es_ES
dc.description.references Hammache, H., Makhloufi, L., & Saidani, B. (2003). Corrosion protection of iron by polypyrrole modified by copper using the cementation process. Corrosion Science, 45(9), 2031-2042. doi:10.1016/s0010-938x(03)00043-x es_ES
dc.description.references Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002 es_ES
dc.description.references CAREEM, M. (2004). Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics, 175(1-4), 725-728. doi:10.1016/j.ssi.2004.01.080 es_ES
dc.description.references Ge, D., Tian, X., Qi, R., Huang, S., Mu, J., Hong, S., … Shi, W. (2009). A polypyrrole-based microchip for controlled drug release. Electrochimica Acta, 55(1), 271-275. doi:10.1016/j.electacta.2009.08.049 es_ES
dc.description.references Sharma, R. K., Rastogi, A. C., & Desu, S. B. (2008). Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications, 10(2), 268-272. doi:10.1016/j.elecom.2007.12.004 es_ES
dc.description.references Rubio Retama, J., López Cabarcos, E., Mecerreyes, D., & López-Ruiz, B. (2004). Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 20(6), 1111-1117. doi:10.1016/j.bios.2004.05.018 es_ES
dc.description.references Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1 es_ES
dc.description.references Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124a es_ES
dc.description.references Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681c es_ES
dc.description.references Brahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). DESIGN AND CHARACTERIZATION OF A GALACTOSE BIOSENSOR USING A NOVEL POLYPYRROLE-HYDROGEL COMPOSITE MEMBRANE. Analytical Letters, 35(5), 797-812. doi:10.1081/al-120004070 es_ES
dc.description.references Jun, H.-K., Hoh, Y.-S., Lee, B.-S., Lee, S.-T., Lim, J.-O., Lee, D.-D., & Huh, J.-S. (2003). Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors and Actuators B: Chemical, 96(3), 576-581. doi:10.1016/j.snb.2003.06.002 es_ES
dc.description.references Kisiel, A., Mazur, M., Kuśnieruk, S., Kijewska, K., Krysiński, P., & Michalska, A. (2010). Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 12(11), 1568-1571. doi:10.1016/j.elecom.2010.08.035 es_ES
dc.description.references Yamamoto, H., Fukuda, M., Isa, I., & Yoshino, K. (1993). Tantalum electrolytic capacitor employing polypyrrole as solid electrolyte. Electronics and Communications in Japan (Part II: Electronics), 76(6), 88-98. doi:10.1002/ecjb.4420760610 es_ES
dc.description.references Yamamoto, H., Oshima, M., Fukuda, M., Isa, I., & Yoshino, K. (1996). Characteristics of aluminium solid electrolytic capacitors using a conducting polymer. Journal of Power Sources, 60(2), 173-177. doi:10.1016/s0378-7753(96)80007-3 es_ES
dc.description.references Sultana, I., Rahman, M. M., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 83, 209-215. doi:10.1016/j.electacta.2012.08.043 es_ES
dc.description.references Xia, J., Chen, L., & Yanagida, S. (2011). Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 21(12), 4644. doi:10.1039/c0jm04116e es_ES
dc.description.references Almuntaser, F. M. A., Majumder, S., Baviskar, P. K., Sali, J. V., & Sankapal, B. R. (2017). Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A, 123(8). doi:10.1007/s00339-017-1131-y es_ES
dc.description.references Hao, D., Xu, B., & Cai, Z. (2018). Polypyrrole coated knitted fabric for robust wearable sensor and heater. Journal of Materials Science: Materials in Electronics, 29(11), 9218-9226. doi:10.1007/s10854-018-8950-2 es_ES
dc.description.references Lima, R. M. A. P., Alcaraz-Espinoza, J. J., da Silva, F. A. G., & de Oliveira, H. P. (2018). Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 10(16), 13783-13795. doi:10.1021/acsami.8b04695 es_ES
dc.description.references Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., … Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13(8), 577-583. doi:10.1002/pat.227 es_ES
dc.description.references Håkansson, E., Amiet, A., Nahavandi, S., & Kaynak, A. (2007). Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. European Polymer Journal, 43(1), 205-213. doi:10.1016/j.eurpolymj.2006.10.001 es_ES
dc.description.references Zhao, H., Li, L., Yang, J., & Zhang, Y. (2008). Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. Journal of Power Sources, 184(2), 375-380. doi:10.1016/j.jpowsour.2008.03.024 es_ES
dc.description.references Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. doi:10.1016/j.apcatb.2009.09.014 es_ES
dc.description.references Park, H., Kim, Y., Choi, Y. S., Hong, W. H., & Jung, D. (2008). Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. Journal of Power Sources, 178(2), 610-619. doi:10.1016/j.jpowsour.2007.08.050 es_ES
dc.description.references Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 25(6), 1516-1520. doi:10.1016/j.bios.2009.10.009 es_ES
dc.description.references Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042 es_ES
dc.description.references Zhou, H., Liu, Z., Liu, X., & Chen, Q. (2016). Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury. Neural Regeneration Research, 11(1), 107. doi:10.4103/1673-5374.175054 es_ES
dc.description.references Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008 es_ES
dc.description.references George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037 es_ES
dc.description.references Uyar, T., Toppare, L., & Hacaloglu, J. (2001). PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science, Part A, 38(11), 1141-1150. doi:10.1081/ma-100107134 es_ES
dc.description.references Zinger, B., Shaier, P., & Zemel, A. (1991). Flexible polypyrrole/ClO4 films formed in aqueous solutions. Synthetic Metals, 40(3), 283-297. doi:10.1016/0379-6779(91)92070-x es_ES
dc.description.references Peres, R. C. D., Juliano, V. F., De Paoli, M.-A., Panero, S., & Scrosati, B. (1993). Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 38(7), 869-876. doi:10.1016/0013-4686(93)87003-v es_ES
dc.description.references De Paoli, M.-A., Peres, R. C. D., Panero, S., & Scrosati, B. (1992). Properties of electrochemically synthesized polymer electrodes—X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 37(7), 1173-1182. doi:10.1016/0013-4686(92)85053-n es_ES
dc.description.references Lim, H. K., Lee, S. O., Song, K. J., Kim, S. G., & Kim, K. H. (2005). Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol). Journal of Applied Polymer Science, 97(3), 1170-1175. doi:10.1002/app.21824 es_ES
dc.description.references Carragher, U., & Breslin, C. B. (2018). Polypyrrole doped with dodecylbenzene sulfonate as a protective coating for copper. Electrochimica Acta, 291, 362-372. doi:10.1016/j.electacta.2018.08.155 es_ES
dc.description.references Arribas, C., & Rueda, D. (1996). Preparation of conductive polypyrrole-polystyrene sulfonate by chemical polymerization. Synthetic Metals, 79(1), 23-26. doi:10.1016/0379-6779(96)80125-1 es_ES
dc.description.references Wu, T.-M., Chang, H.-L., & Lin, Y.-W. (2009). Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polymer International, 58(9), 1065-1070. doi:10.1002/pi.2634 es_ES
dc.description.references Jin, C., Yang, F., & Yang, W. (2006). Electropolymerization and ion exchange properties of a polypyrrole film doped bypara-toluene sulfonate. Journal of Applied Polymer Science, 101(4), 2518-2522. doi:10.1002/app.23775 es_ES
dc.description.references Kaynak, A. (2009). Decay of electrical conductivity in p-toluene sulfonate doped polypyrrole films. Fibers and Polymers, 10(5), 590-593. doi:10.1007/s12221-010-0590-y es_ES
dc.description.references Samuelson, L. A., & Druy, M. A. (1986). Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules, 19(3), 824-828. doi:10.1021/ma00157a057 es_ES
dc.description.references Hou, H., Yu, C., Liu, X., Yao, Y., Liao, Q., Dai, Z., & Li, D. (2018). Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode. Surface Innovations, 6(3), 159-166. doi:10.1680/jsuin.17.00068 es_ES
dc.description.references Sultana, I., Rahman, M. M., Li, S., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 60, 201-205. doi:10.1016/j.electacta.2011.11.037 es_ES
dc.description.references Jérôme, C., Martinot, L., Strivay, D., Weber, G., & Jérôme, R. (2001). Controlled exchange of metallic cations by polypyrrole-based resins. Synthetic Metals, 118(1-3), 45-55. doi:10.1016/s0379-6779(00)00275-7 es_ES
dc.description.references Zhao, H., Price, W. E., Too, C. O., Wallace, G. G., & Zhou, D. (1996). Parameters influencing transport across conducting electroactive polymer membranes. Journal of Membrane Science, 119(2), 199-212. doi:10.1016/0376-7388(96)00130-5 es_ES
dc.description.references Ansari Khalkhali, R., Price, W. ., & Wallace, G. . (2003). Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. Reactive and Functional Polymers, 56(3), 141-146. doi:10.1016/s1381-5148(03)00055-5 es_ES
dc.description.references Pyo, M., Reynolds, J. R., Warren, L. F., & Marcy, H. O. (1994). Long-term redox switching stability of polypyrrole. Synthetic Metals, 68(1), 71-77. doi:10.1016/0379-6779(94)90149-x es_ES
dc.description.references Murray, P., Spinks, G. M., Wallace, G. G., & Burford, R. P. (1997). In-situ mechanical properties of tosylate doped (pts) polypyrrole. Synthetic Metals, 84(1-3), 847-848. doi:10.1016/s0379-6779(96)04177-x es_ES
dc.description.references Chengyou, J., & Fenglin, Y. (2006). Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions. Sensors and Actuators B: Chemical, 114(2), 737-739. doi:10.1016/j.snb.2005.06.026 es_ES
dc.description.references Li, S., Qiu, Y., & Guo, X. (2009). Influence of doping anions on the ion exchange behavior of polypyrrole. Journal of Applied Polymer Science, 114(4), 2307-2314. doi:10.1002/app.30721 es_ES
dc.description.references Raudsepp, T., Marandi, M., Tamm, T., Sammelselg, V., & Tamm, J. (2014). Influence of ion-exchange on the electrochemical properties of polypyrrole films. Electrochimica Acta, 122, 79-86. doi:10.1016/j.electacta.2013.08.083 es_ES
dc.description.references Syritski, V., Öpik, A., & Forsén, O. (2003). Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochimica Acta, 48(10), 1409-1417. doi:10.1016/s0013-4686(03)00018-5 es_ES
dc.description.references Fang, Y., Liu, J., Yu, D. J., Wicksted, J. P., Kalkan, K., Topal, C. O., … Li, J. (2010). Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources, 195(2), 674-679. doi:10.1016/j.jpowsour.2009.07.033 es_ES
dc.description.references Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L., & Shen, J. (2014). Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 58, 237-241. doi:10.1016/j.bios.2014.02.081 es_ES
dc.description.references Zhang, J., & Zhao, X. S. (2012). Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C, 116(9), 5420-5426. doi:10.1021/jp211474e es_ES
dc.description.references Li, W., Zhang, Q., Zheng, G., Seh, Z. W., Yao, H., & Cui, Y. (2013). Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 13(11), 5534-5540. doi:10.1021/nl403130h es_ES
dc.description.references Zhu, C., Zhai, J., Wen, D., & Dong, S. (2012). Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. Journal of Materials Chemistry, 22(13), 6300. doi:10.1039/c2jm16699b es_ES
dc.description.references Ding, C., Qian, X., Yu, G., & An, X. (2010). Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose, 17(6), 1067-1077. doi:10.1007/s10570-010-9442-6 es_ES
dc.description.references Yuan, L., Yao, B., Hu, B., Huo, K., Chen, W., & Zhou, J. (2013). Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 6(2), 470. doi:10.1039/c2ee23977a es_ES
dc.description.references Lu, Y., Tao, P., Zhang, N., & Nie, S. (2020). Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Carbohydrate Polymers, 245, 116463. doi:10.1016/j.carbpol.2020.116463 es_ES
dc.description.references Zhang, Y., Hao, N., Lin, X., & Nie, S. (2020). Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydrate Polymers, 234, 115888. doi:10.1016/j.carbpol.2020.115888 es_ES
dc.description.references Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of Conductive Polypyrrole/Polyurethane Composite Foams by In situ Polymerization of Pyrrole. Chemistry of Materials, 20(7), 2574-2582. doi:10.1021/cm800005r es_ES
dc.description.references Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1 es_ES
dc.description.references Mróz, P., Białas, S., Mucha, M., & Kaczmarek, H. (2013). Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 573, 186-192. doi:10.1016/j.tca.2013.09.012 es_ES
dc.description.references Araque-Monrós, M. C., Vidaurre, A., Gil-Santos, L., Gironés Bernabé, S., Monleón-Pradas, M., & Más-Estellés, J. (2013). Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polymer Degradation and Stability, 98(9), 1563-1570. doi:10.1016/j.polymdegradstab.2013.06.031 es_ES
dc.description.references Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012 es_ES
dc.description.references Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010 es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435 es_ES
dc.description.references Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2011). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. doi:10.1177/0892705711423291 es_ES
dc.description.references Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093 es_ES
dc.description.references Chitte, H. K., Shinde, G. N., Bhat, N. V., & Walunj, V. E. (2011). Synthesis of Polypyrrole Using Ferric Chloride (FeCl<sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology, 01(02), 47-56. doi:10.4236/jst.2011.12007 es_ES
dc.description.references Uyar, T., Toppare, L., & Hacaloğlu, J. (2002). Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 64(1), 1-13. doi:10.1016/s0165-2370(01)00166-8 es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1 es_ES
dc.description.references Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301 es_ES
dc.description.references Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659 es_ES
dc.description.references Chronakis, I. S., Grapenson, S., & Jakob, A. (2006). Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer, 47(5), 1597-1603. doi:10.1016/j.polymer.2006.01.032 es_ES
dc.description.references Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957 es_ES
dc.description.references Bashir, T., Shakoor, A., Ahmed, E., Niaz, N. A., Iqbal, S., Akhtar, M. S., & Malik, M. A. (2017). Magnetic, Electrical and Thermal Studies of Polypyrrole-Fe2O3 Nanocomposites. Polymer Science, Series A, 59(6), 902-908. doi:10.1134/s0965545x17060013 es_ES
dc.description.references Khan, A. A., Hussain, R., & Shaheen, S. (2016). Electrical conductivity and acetaldehyde vapour sensing studies on synthetic polypyrrole–titanium(iv)sulphosalicylophosphate nanocomposite cation exchange material. New Journal of Chemistry, 40(3), 2200-2210. doi:10.1039/c5nj03129j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem