- -

Self-defined information indices: application to the case of university rankings

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Self-defined information indices: application to the case of university rankings

Show full item record

Ferrer Sapena, A.; Erdogan, E.; Jiménez-Fernández, E.; Sánchez Pérez, EA.; Peset Mancebo, MF. (2020). Self-defined information indices: application to the case of university rankings. Scientometrics. 124(3):2443-2456. https://doi.org/10.1007/s11192-020-03575-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/171320

Files in this item

Item Metadata

Title: Self-defined information indices: application to the case of university rankings
Author: Ferrer Sapena, Antonia Erdogan, E. Jiménez-Fernández, E. Sánchez Pérez, Enrique Alfonso Peset Mancebo, María Fernanda
UPV Unit: Universitat Politècnica de València. Departamento de Comunicación Audiovisual, Documentación e Historia del Arte - Departament de Comunicació Audiovisual, Documentació i Història de l'Art
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] University rankings are now relevant decision-making tools for both institutional and private purposes in the management of higher education and research. However, they are often computed only for a small set of ...[+]
Subjects: Reinforcement learning , Metric space , Lipschitz extension , Shanghai , ARWU , University ranking
Copyrigths: Reserva de todos los derechos
Source:
Scientometrics. (issn: 0138-9130 )
DOI: 10.1007/s11192-020-03575-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11192-020-03575-6
Project ID:
MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD/MTM2016-77054-C2-1-P
Thanks:
The third and fourth authors gratefully acknowledge the support of the Ministerio de Ciencia, Innovacion y Universidades (Spain), Agencia Estatal de Investigacion, and FEDER, under Grant MTM2016-77054-C2-1-P. The first ...[+]
Type: Artículo

References

Aguillo, I., Bar-Ilan, J., Levene, M., & Ortega, J. (2010). Comparing university rankings. Scientometrics, 85(1), 243–256.

Asadi, K., Dipendra, M., & Littman, M. L. (2018). Lipschitz continuity in model-based reinforcement learning. In Proceedings of the 35th International Conference on Machine Learning, Proc. Mach. Lear. Res., Vol. 80, pp. 264–273.

Bougnol, M. L., & Dulá, J. H. (2013). A mathematical model to optimize decisions to impact multi-attribute rankings. Scientometrics, 95(2), 785–796. [+]
Aguillo, I., Bar-Ilan, J., Levene, M., & Ortega, J. (2010). Comparing university rankings. Scientometrics, 85(1), 243–256.

Asadi, K., Dipendra, M., & Littman, M. L. (2018). Lipschitz continuity in model-based reinforcement learning. In Proceedings of the 35th International Conference on Machine Learning, Proc. Mach. Lear. Res., Vol. 80, pp. 264–273.

Bougnol, M. L., & Dulá, J. H. (2013). A mathematical model to optimize decisions to impact multi-attribute rankings. Scientometrics, 95(2), 785–796.

Çakır, M. P., Acartürk, C., Alaşehir, O., & Çilingir, C. (2015). A comparative analysis of global and national university ranking systems. Scientometrics, 103(3), 813–848.

Cancino, C. A., Merigó, J. M., & Coronado, F. C. (2017). A bibliometric analysis of leading universities in innovation research. Journal of Innovation & Knowledge, 2(3), 106–124.

Chen, K.-H., & Liao, P.-Y. (2012). A comparative study on world university rankings: A bibliometric survey. Scientometrics, 92(1), 89–103.

Cinzia, D., & Bonaccorsi, A. (2017). Beyond university rankings? Generating new indicators on universities by linking data in open platforms. Journal of the Association for Information Science and Technology, 68(2), 508–529.

Cobzaş, Ş., Miculescu, R., & Nicolae, A. (2019). Lipschitz functions. Berlin: Springer.

Deza, M. M., & Deza, E. (2009). Encyclopedia of distances. Berlin: Springer.

2019 U-Multirank ranking: European universities performing well. https://ec.europa.eu/education/news/u-multirank-publishes-sixth-edition-en .

Dobrota, M., Bulajic, M., Bornmann, L., & Jeremic, V. (2016). A new approach to the QS university ranking using the composite I-distance indicator: Uncertainty and sensitivity analyses. Journal of the Association for Information Science and Technology, 67(1), 200–211.

Falciani, H., Calabuig, J. M., & Sánchez Pérez, E. A. (2020). Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets. Neurocomputing, 398, 172–184.

Kehm, B. M. (2014). Global university rankings—Impacts and unintended side effects. European Journal of Education, 49(1), 102–112.

Lim, M. A., & Øerberg, J. W. (2017). Active instruments: On the use of university rankings in developing national systems of higher education. Policy Reviews in Higher Education, 1(1), 91–108.

Luo, F., Sun, A., Erdt, M., Raamkumar, A. S., & Theng, Y. L. (2018). Exploring prestigious citations sourced from top universities in bibliometrics and altmetrics: A case study in the computer science discipline. Scientometrics, 114(1), 1–17.

Marginson, S. (2014). University rankings and social science. European Journal of Education, 49(1), 45–59.

Pagell, R. A. (2014). Bibliometrics and university research rankings demystified for librarians. Library and information sciences (pp. 137–160). Berlin: Springer.

Rao, A. (2015). Algorithms for Lipschitz extensions on graphs. Yale University: ProQuest Dissertations Publishing, 10010433.

Rosa, K. D., Metsis, V., & Athitsos, V. (2012). Boosted ranking models: A unifying framework for ranking predictions. Knowledge and Information Systems, 30(3), 543–568.

Saisana, M., d’Hombres, B., & Saltelli, A. (2011). Rickety numbers: Volatility of university rankings and policy implications. Research Policy, 40(1), 165–177.

Tabassum, A., Hasan, M., Ahmed, S., Tasmin, R., Abdullah, D. M., & Musharrat, T. (2017). University ranking prediction system by analyzing influential global performance indicators. In 2017 9th International Conference on Knowledge and Smart Technology (KST) (pp. 126–131) IEEE.

Van Raan, A. F. J., Van Leeuwen, T. N., & Visser, M. S. (2011). Severe language effect in university rankings: Particularly Germany and France are wronged in citation-based rankings. Scientometrics, 88(2), 495–498.

von Luxburg, U., & Bousquet, O. (2004). Distance-based classification with Lipschitz functions. Journal of Machine Learning Research, 5, 669–695.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record