- -

Biased competition in the absence of input bias revealed through corticostriatal computation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biased competition in the absence of input bias revealed through corticostriatal computation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ardid-Ramírez, Joan Salvador es_ES
dc.contributor.author Sherfey, Jason S. es_ES
dc.contributor.author McCarthy, Michelle M. es_ES
dc.contributor.author Hass, Joachim es_ES
dc.contributor.author Pittman-Polletta, Benjamin R. es_ES
dc.contributor.author Kopell, Nancy es_ES
dc.date.accessioned 2021-09-03T03:34:26Z
dc.date.available 2021-09-03T03:34:26Z
dc.date.issued 2019-04-23 es_ES
dc.identifier.issn 0027-8424 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171332
dc.description.abstract [EN] Classical accounts of biased competition require an input bias to resolve the competition between neuronal ensembles driving downstream processing. However, flexible and reliable selection of behaviorally relevant ensembles can occur with unbiased stimulation: striatal D1 and D2 spiny projection neurons (SPNs) receive balanced cortical input, yet their activity determines the choice between GO and NO-GO pathways in the basal ganglia. We here present a corticostriatal model identifying three mechanisms that rely on physiological asymmetries to effect rate- and time-coded biased competition in the presence of balanced inputs. First, tonic input strength determines which one of the two SPN phenotypes exhibits a higher mean firing rate. Second, low-strength oscillatory inputs induce higher firing rate in D2 SPNs but higher coherence between D1 SPNs. Third, high-strength inputs oscillating at distinct frequencies can preferentially activate D1 or D2 SPN populations. Of these mechanisms, only the latter accommodates observed rhythmic activity supporting rule-based decision making in prefrontal cortex es_ES
dc.description.sponsorship We thank T. Womelsdorf for helpful suggestions on an earlier version of the manuscript. We also thank the two reviewers for the constructive comments that enhanced the quality of the manuscript. In particular, their question regarding the resonant properties of SPNs under distinct mean input helped us to uncover how the resonance of D2 SPNs shifts in frequency space (Fig. 3E). Our research was supported by the Army Research Office (ARO) Grant W911NF-12-R-0012-02 (to N.K.). Additionally, S.A. and N.K. were supported by NSF Grant DMS-1042134, and M.M.M. was supported by the Collaborative Research in Computational Neuroscience (CRCNS) NIH Grant CRCNS 1R01N5081716 es_ES
dc.language Inglés es_ES
dc.publisher Proceedings of the National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rule-based decisions es_ES
dc.subject Prefrontal cortex es_ES
dc.subject Brain rhythms es_ES
dc.subject Neural circuit modeling es_ES
dc.subject Spiny projection neurons es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Biased competition in the absence of input bias revealed through corticostriatal computation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.1812535116 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1042134/US/Cognitive Rhythms Collaborative: A Discovery Network/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH//1R01N5081716/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARO//W911NF-12-R-0012-02/US/Event-Driven Game Theory for Predicting Dynamical Systems/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Ardid-Ramírez, JS.; Sherfey, JS.; Mccarthy, MM.; Hass, J.; Pittman-Polletta, BR.; Kopell, N. (2019). Biased competition in the absence of input bias revealed through corticostriatal computation. Proceedings of the National Academy of Sciences. 116(17):8564-8569. https://doi.org/10.1073/pnas.1812535116 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1073/pnas.1812535116 es_ES
dc.description.upvformatpinicio 8564 es_ES
dc.description.upvformatpfin 8569 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.description.issue 17 es_ES
dc.identifier.pmid 30962383 es_ES
dc.identifier.pmcid PMC6486766 es_ES
dc.relation.pasarela S\434965 es_ES
dc.contributor.funder Army Research Office, EEUU es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1373), 1245-1255. doi:10.1098/rstb.1998.0280 es_ES
dc.description.references Deco, G., & Rolls, E. T. (2005). Neurodynamics of Biased Competition and Cooperation for Attention: A Model With Spiking Neurons. Journal of Neurophysiology, 94(1), 295-313. doi:10.1152/jn.01095.2004 es_ES
dc.description.references Ardid, S., Wang, X.-J., & Compte, A. (2007). An Integrated Microcircuit Model of Attentional Processing in the Neocortex. Journal of Neuroscience, 27(32), 8486-8495. doi:10.1523/jneurosci.1145-07.2007 es_ES
dc.description.references Börgers, C., Epstein, S., & Kopell, N. J. (2008). Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceedings of the National Academy of Sciences, 105(46), 18023-18028. doi:10.1073/pnas.0809511105 es_ES
dc.description.references Buia, C. I., & Tiesinga, P. H. (2008). Role of Interneuron Diversity in the Cortical Microcircuit for Attention. Journal of Neurophysiology, 99(5), 2158-2182. doi:10.1152/jn.01004.2007 es_ES
dc.description.references Ardid, S., Wang, X.-J., Gomez-Cabrero, D., & Compte, A. (2010). Reconciling Coherent Oscillation with Modulationof Irregular Spiking Activity in Selective Attention:Gamma-Range Synchronization between Sensoryand Executive Cortical Areas. Journal of Neuroscience, 30(8), 2856-2870. doi:10.1523/jneurosci.4222-09.2010 es_ES
dc.description.references Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366-375. doi:10.1016/0166-2236(89)90074-x es_ES
dc.description.references Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266-271. doi:10.1016/0166-2236(90)90107-l es_ES
dc.description.references Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., & Sibley, D. R. (1990). D 1 and D 2 Dopamine Receptor-regulated Gene Expression of Striatonigral and Striatopallidal Neurons. Science, 250(4986), 1429-1432. doi:10.1126/science.2147780 es_ES
dc.description.references Ballion, B., Mallet, N., Bézard, E., Lanciego, J. L., & Gonon, F. (2008). Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. European Journal of Neuroscience, 27(9), 2313-2321. doi:10.1111/j.1460-9568.2008.06192.x es_ES
dc.description.references Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson’s Disease. Journal of Neuroscience, 28(21), 5504-5512. doi:10.1523/jneurosci.5493-07.2008 es_ES
dc.description.references Tecuapetla, F., Carrillo-Reid, L., Bargas, J., & Galarraga, E. (2007). Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses. Proceedings of the National Academy of Sciences, 104(24), 10258-10263. doi:10.1073/pnas.0703813104 es_ES
dc.description.references Arias-García, M. A., Tapia, D., Flores-Barrera, E., Pérez-Ortega, J. E., Bargas, J., & Galarraga, E. (2013). Duration differences of corticostriatal responses in striatal projection neurons depend on calcium activated potassium currents. Frontiers in Systems Neuroscience, 7. doi:10.3389/fnsys.2013.00063 es_ES
dc.description.references Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of Striatal Projection Systems by Dopamine. Annual Review of Neuroscience, 34(1), 441-466. doi:10.1146/annurev-neuro-061010-113641 es_ES
dc.description.references Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., & Costa, R. M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436), 238-242. doi:10.1038/nature11846 es_ES
dc.description.references Oldenburg, I. A., & Sabatini, B. L. (2015). Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron, 86(5), 1174-1181. doi:10.1016/j.neuron.2015.05.008 es_ES
dc.description.references Ardid, S., & Wang, X.-J. (2013). A Tweaking Principle for Executive Control: Neuronal Circuit Mechanism for Rule-Based Task Switching and Conflict Resolution. Journal of Neuroscience, 33(50), 19504-19517. doi:10.1523/jneurosci.1356-13.2013 es_ES
dc.description.references Bogacz, R., Martin Moraud, E., Abdi, A., Magill, P. J., & Baufreton, J. (2016). Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection. PLOS Computational Biology, 12(7), e1005004. doi:10.1371/journal.pcbi.1005004 es_ES
dc.description.references Asaad, W. F., Rainer, G., & Miller, E. K. (1998). Neural Activity in the Primate Prefrontal Cortex during Associative Learning. Neuron, 21(6), 1399-1407. doi:10.1016/s0896-6273(00)80658-3 es_ES
dc.description.references White, I. M., & Wise, S. P. (1999). Rule-dependent neuronal activity in the prefrontal cortex. Experimental Brain Research, 126(3), 315-335. doi:10.1007/s002210050740 es_ES
dc.description.references Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411(6840), 953-956. doi:10.1038/35082081 es_ES
dc.description.references Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. Science, 291(5502), 312-316. doi:10.1126/science.291.5502.312 es_ES
dc.description.references Wise, S. P., Murray, E. A., & Gerfen, C. R. (1996). The Frontal Cortex-Basal Ganglia System in Primates. Critical Reviews™ in Neurobiology, 10(3-4), 317-356. doi:10.1615/critrevneurobiol.v10.i3-4.30 es_ES
dc.description.references Antzoulatos, E. G., & Miller, E. K. (2011). Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories. Neuron, 71(2), 243-249. doi:10.1016/j.neuron.2011.05.040 es_ES
dc.description.references Marquand, A. F., Haak, K. V., & Beckmann, C. F. (2017). Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nature Human Behaviour, 1(8). doi:10.1038/s41562-017-0146 es_ES
dc.description.references Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D., & Miller, E. K. (2012). Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron, 76(4), 838-846. doi:10.1016/j.neuron.2012.09.029 es_ES
dc.description.references Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332-361. doi:10.1037/0033-295x.97.3.332 es_ES
dc.description.references Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Reilly, R. C. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proceedings of the National Academy of Sciences, 102(20), 7338-7343. doi:10.1073/pnas.0502455102 es_ES
dc.description.references Antzoulatos, E. G., & Miller, E. K. (2014). Increases in Functional Connectivity between Prefrontal Cortex and Striatum during Category Learning. Neuron, 83(1), 216-225. doi:10.1016/j.neuron.2014.05.005 es_ES
dc.description.references Börgers, C., & Kopell, N. (2003). Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity. Neural Computation, 15(3), 509-538. doi:10.1162/089976603321192059 es_ES
dc.description.references Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442-446. doi:10.1038/nature02116 es_ES
dc.description.references Bahuguna, J., Aertsen, A., & Kumar, A. (2015). Existence and Control of Go/No-Go Decision Transition Threshold in the Striatum. PLOS Computational Biology, 11(4), e1004233. doi:10.1371/journal.pcbi.1004233 es_ES
dc.description.references Ott, T., Jacob, S. N., & Nieder, A. (2014). Dopamine Receptors Differentially Enhance Rule Coding in Primate Prefrontal Cortex Neurons. Neuron, 84(6), 1317-1328. doi:10.1016/j.neuron.2014.11.012 es_ES
dc.description.references Sherfey, J. S., Ardid, S., Hass, J., Hasselmo, M. E., & Kopell, N. J. (2018). Flexible resonance in prefrontal networks with strong feedback inhibition. PLOS Computational Biology, 14(8), e1006357. doi:10.1371/journal.pcbi.1006357 es_ES
dc.description.references Vogels, T. P., & Abbott, L. F. (2009). Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neuroscience, 12(4), 483-491. doi:10.1038/nn.2276 es_ES
dc.description.references Sherfey JS Ardid S Miller EK Hasselmo ME Kopell N (2019) Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. bioRxiv:10.1101/531574. es_ES
dc.description.references Akam, T., & Kullmann, D. M. (2010). Oscillations and Filtering Networks Support Flexible Routing of Information. Neuron, 67(2), 308-320. doi:10.1016/j.neuron.2010.06.019 es_ES
dc.description.references Sherfey, J. S., Soplata, A. E., Ardid, S., Roberts, E. A., Stanley, D. A., Pittman-Polletta, B. R., & Kopell, N. J. (2018). DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation. Frontiers in Neuroinformatics, 12. doi:10.3389/fninf.2018.00010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem