- -

Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aleixandre-Tudó, José Luis es_ES
dc.contributor.author Bolaños Pizarro, Máxima es_ES
dc.contributor.author Aleixandre Benavent, José Luís es_ES
dc.contributor.author Aleixandre-Benavent, Rafael es_ES
dc.date.accessioned 2021-09-04T03:41:06Z
dc.date.available 2021-09-04T03:41:06Z
dc.date.issued 2020-08-26 es_ES
dc.identifier.issn 0021-8561 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171422
dc.description This document is the unedited Author¿s version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.jafc.0c02141. es_ES
dc.description.abstract [EN] The main objective of this investigation was to analyze the scientific production in global research on nanotechnology, integrating scientific production, funding of studies, collaborations between countries, and the most cited publications. The source for obtaining the research papers for our analysis was the Science Citation Index Expanded from the Web of Science. A total of 3546 documents were extracted during the period of 1997-2018. Food science & technology, chemistry (applied and analytical), spectroscopy, and agriculture appeared as the main areas where the articles were published. Most prolific and cited journals were Analytical Methods, Journal of Agricultural and Food Chemistry, and Food Chemistry. The co-word analysis showed the relationships between "nanoparticles", which is the central word, and "silver nanoparticles", "delivery systems", and "zincnanoparticles". The most productive countries were China (1089 papers), the United States (523), Iran (427), and India (359). The main cited topics deal with the biomedical applications of nanoparticles, its synthesis from plants, and its applications in food science. The results highlight an important collaboration between institutions and countries. The availability of funding for research in nanotechnology was remarkable compared to other fields. The multidisciplinarity of the nanotechnology field is one of the main features as well as one of the central findings. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Journal of Agricultural and Food Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Scientific research es_ES
dc.subject Nanotechnology es_ES
dc.subject Nanomaterials es_ES
dc.subject International collaboration es_ES
dc.subject Journals es_ES
dc.subject Hot papers es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.jafc.0c02141 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Gestión de la Innovación y del Conocimiento - Institut de Gestió de la Innovació i del Coneixement es_ES
dc.description.bibliographicCitation Aleixandre-Tudó, JL.; Bolaños Pizarro, M.; Aleixandre Benavent, JL.; Aleixandre-Benavent, R. (2020). Worldwide Scientific Research on Nanotechnology: A Bibliometric Analysis of Tendencies, Funding, and Challenges. Journal of Agricultural and Food Chemistry. 68(34):9158-9170. https://doi.org/10.1021/acs.jafc.0c02141 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.jafc.0c02141 es_ES
dc.description.upvformatpinicio 9158 es_ES
dc.description.upvformatpfin 9170 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.description.issue 34 es_ES
dc.identifier.pmid 32786874 es_ES
dc.relation.pasarela S\427460 es_ES
dc.description.references Ranjan, S., Dasgupta, N., & Lichtfouse, E. (Eds.). (2016). Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews. doi:10.1007/978-3-319-39303-2 es_ES
dc.description.references National Science and Technology Council (NSTC). National Nanotechnology Initiative Strategic Plan; NSTC: Washington, D.C., 2016; https://www.nano.gov/sites/default/files/pub_resource/2016-nni-strategic-plan.pdf (accessed June 11, 2020. es_ES
dc.description.references Durán, N., & Marcato, P. D. (2012). Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. International Journal of Food Science & Technology, 48(6), 1127-1134. doi:10.1111/ijfs.12027 es_ES
dc.description.references Chaudhry, Q., Castle, L., & Watkins, R. (Eds.). (2010). Nanotechnologies in Food. Nanoscience & Nanotechnology Series. doi:10.1039/9781847559883 es_ES
dc.description.references Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. doi:10.1016/j.jcis.2011.07.017 es_ES
dc.description.references Chen, W.-T., Chan, A., Jovic, V., Sun-Waterhouse, D., Murai, K., Idriss, H., & Waterhouse, G. I. N. (2014). Effect of the TiO2 Crystallite Size, TiO2 Polymorph and Test Conditions on the Photo-Oxidation Rate of Aqueous Methylene Blue. Topics in Catalysis, 58(2-3), 85-102. doi:10.1007/s11244-014-0348-7 es_ES
dc.description.references WATERHOUSE, G. (2004). Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Applied Catalysis A: General, 266(2), 257-273. doi:10.1016/j.apcata.2004.02.015 es_ES
dc.description.references Chen, W.-T., Chan, A., Sun-Waterhouse, D., Moriga, T., Idriss, H., & Waterhouse, G. I. N. (2015). Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 326, 43-53. doi:10.1016/j.jcat.2015.03.008 es_ES
dc.description.references Allen, M. W., Zemlyanov, D. Y., Waterhouse, G. I. N., Metson, J. B., Veal, T. D., McConville, C. F., & Durbin, S. M. (2011). Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Applied Physics Letters, 98(10), 101906. doi:10.1063/1.3562308 es_ES
dc.description.references Leveneur, J., Waterhouse, G. I. N., Kennedy, J., Metson, J. B., & Mitchell, D. R. G. (2011). Nucleation and Growth of Fe Nanoparticles in SiO2: A TEM, XPS, and Fe L-Edge XANES Investigation. The Journal of Physical Chemistry C, 115(43), 20978-20985. doi:10.1021/jp206357c es_ES
dc.description.references Waterhouse, G. I. N., Chen, W.-T., Chan, A., Jin, H., Sun-Waterhouse, D., & Cowie, B. C. C. (2015). Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals. The Journal of Physical Chemistry C, 119(12), 6647-6659. doi:10.1021/acs.jpcc.5b00437 es_ES
dc.description.references Murdoch, M., Waterhouse, G. I. N., Nadeem, M. A., Metson, J. B., Keane, M. A., Howe, R. F., … Idriss, H. (2011). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 3(6), 489-492. doi:10.1038/nchem.1048 es_ES
dc.description.references Sharma, M., Waterhouse, G. I. N., Loader, S. W. C., Garg, S., & Svirskis, D. (2013). High surface area polypyrrole scaffolds for tunable drug delivery. International Journal of Pharmaceutics, 443(1-2), 163-168. doi:10.1016/j.ijpharm.2013.01.006 es_ES
dc.description.references Yabutani, T., Waterhouse, G. I. N., Sun-Waterhouse, D., Metson, J. B., Iinuma, A., Thuy, L. T. X., … Motonaka, J. (2014). Facile synthesis of platinum nanoparticle-containing porous carbons, and their application to amperometric glucose biosensing. Microchimica Acta, 181(15-16), 1871-1878. doi:10.1007/s00604-014-1270-1 es_ES
dc.description.references Suominen, A., Li, Y., Youtie, J., & Shapira, P. (2016). A bibliometric analysis of the development of next generation active nanotechnologies. Journal of Nanoparticle Research, 18(9). doi:10.1007/s11051-016-3578-8 es_ES
dc.description.references Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 20-31. doi:10.1016/j.nano.2006.11.008 es_ES
dc.description.references Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J., & Apul, D. (2017). Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. Environmental Science & Technology, 51(8), 4722-4732. doi:10.1021/acs.est.6b06272 es_ES
dc.description.references Xiao, H., Ai, Z., & Zhang, L. (2009). Nonaqueous Sol−Gel Synthesized Hierarchical CeO2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment. The Journal of Physical Chemistry C, 113(38), 16625-16630. doi:10.1021/jp9050269 es_ES
dc.description.references Crane, R. A., & Scott, T. B. (2012). Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. Journal of Hazardous Materials, 211-212, 112-125. doi:10.1016/j.jhazmat.2011.11.073 es_ES
dc.description.references KOSTOFF, R., TSHITEYA, R., PFEIL, K., HUMENIK, J., & KARYPIS, G. (2005). Power source roadmaps using bibliometrics and database tomography. Energy, 30(5), 709-730. doi:10.1016/j.energy.2004.04.058 es_ES
dc.description.references Heersmink, R., van den Hoven, J., van Eck, N. J., & van den Berg, J. (2011). Bibliometric mapping of computer and information ethics. Ethics and Information Technology, 13(3), 241-249. doi:10.1007/s10676-011-9273-7 es_ES
dc.description.references Moed, H. F., De Bruin, R. E., & Van Leeuwen, T. N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. Scientometrics, 33(3), 381-422. doi:10.1007/bf02017338 es_ES
dc.description.references Kostoff, R. N. (2002). Scientometrics, 53(1), 49-71. doi:10.1023/a:1014831920172 es_ES
dc.description.references Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365-391. doi:10.1016/j.joi.2016.02.007 es_ES
dc.description.references Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Tendencies and Challenges in Worldwide Scientific Research on Probiotics. Probiotics and Antimicrobial Proteins, 12(3), 785-797. doi:10.1007/s12602-019-09591-0 es_ES
dc.description.references Rueda, G.; Gerdsri, P.; Kocaoglu, D. F. Bibliometrics and Social Network Analysis of the Nanotechnology Field. PICMET 2007 Proceedings; Portland, OR, Aug 5–9, 2007. es_ES
dc.description.references Aleixandre-Tudó, J. L., Castelló-Cogollos, L., Aleixandre, J. L., & Aleixandre-Benavent, R. (2019). Renewable energies: Worldwide trends in research, funding and international collaboration. Renewable Energy, 139, 268-278. doi:10.1016/j.renene.2019.02.079 es_ES
dc.description.references Batagelj, V., & Mrvar, A. (2002). Pajek— Analysis and Visualization of Large Networks. Lecture Notes in Computer Science, 477-478. doi:10.1007/3-540-45848-4_54 es_ES
dc.description.references Chiu, W.-T., & Ho, Y.-S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3-17. doi:10.1007/s11192-005-1523-1 es_ES
dc.description.references Aleixandre-Benavent, R., Aleixandre-Tudó, J. L., Castelló-Cogollos, L., & Aleixandre, J. L. (2018). Trends in global research in deforestation. A bibliometric analysis. Land Use Policy, 72, 293-302. doi:10.1016/j.landusepol.2017.12.060 es_ES
dc.description.references Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloe vera Plant Extract. Biotechnology Progress, 22(2), 577-583. doi:10.1021/bp0501423 es_ES
dc.description.references Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2007). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715-728. doi:10.1007/s11051-007-9266-y es_ES
dc.description.references Duran, E., Astroza, K., Ocaranza-Ozimica, J., Peñailillo, D., Pavez-Soto, I., & Ramirez-Tagle, R. (2019). Scientific Research on Nanotechnology in Latin American Journals Published in SciELO: Bibliometric Analysis of Gender Differences. NanoEthics, 13(2), 113-118. doi:10.1007/s11569-019-00344-5 es_ES
dc.description.references Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotecnology on the balance. Scientometrics, 38(2), 321-325. doi:10.1007/bf02457417 es_ES
dc.description.references Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. Scientometrics, 58(3), 507-527. doi:10.1023/b:scie.0000006877.45467.a7 es_ES
dc.description.references Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425-465. doi:10.1023/b:scie.0000018542.71314.38 es_ES
dc.description.references Arora, S. K., Youtie, J., Carley, S., Porter, A. L., & Shapira, P. (2013). Measuring the development of a common scientific lexicon in nanotechnology. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2194-0 es_ES
dc.description.references Munoz-Sandoval, E. (2013). Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of Nanoparticle Research, 16(1). doi:10.1007/s11051-013-2152-x es_ES
dc.description.references Roco, M. C., Mirkin, C. A., & Hersam, M. C. (2011). Nanotechnology research directions for societal needs in 2020: summary of international study. Journal of Nanoparticle Research, 13(3), 897-919. doi:10.1007/s11051-011-0275-5 es_ES
dc.description.references Pardo-Guerra, J. P. (2011). Mapping emergence across the Atlantic: Some (tentative) lessons on nanotechnology in Latin America. Technology in Society, 33(1-2), 94-108. doi:10.1016/j.techsoc.2011.03.012 es_ES
dc.description.references Youtie, J., Porter, A. L., Shapira, P., & Newman, N. (2018). Lessons From 10 Years of Nanotechnology Bibliometric Analysis. Nanotechnology Environmental Health and Safety, 11-31. doi:10.1016/b978-0-12-813588-4.00002-6 es_ES
dc.description.references Yamashita, Y., & Okubo, Y. (2006). Patterns of scientific collaboration between Japan and France: Inter-sectoral analysis using Probabilistic Partnership Index (PPI). Scientometrics, 68(2), 303-324. doi:10.1007/s11192-006-0105-1 es_ES
dc.description.references Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology. Research Policy, 36(6), 880-886. doi:10.1016/j.respol.2007.02.004 es_ES
dc.description.references Niu, F., & Qiu, J. (2013). Network structure, distribution and the growth of Chinese international research collaboration. Scientometrics, 98(2), 1221-1233. doi:10.1007/s11192-013-1170-x es_ES
dc.description.references Tang, L., Shapira, P., & Youtie, J. (2015). Is there a clubbing effect underlying Chinese research citation Increases? Journal of the Association for Information Science and Technology, 66(9), 1923-1932. doi:10.1002/asi.23302 es_ES
dc.description.references Jiang, M., Qi, Y., Liu, H., & Chen, Y. (2018). The Role of Nanomaterials and Nanotechnologies in Wastewater Treatment: a Bibliometric Analysis. Nanoscale Research Letters, 13(1). doi:10.1186/s11671-018-2649-4 es_ES
dc.description.references Brahic, C. China Encroaches on US Nanotech Lead; SciDev.Net: Wallingford, U.K., 2005; https://www.scidev.net/global/publishing/news/china-encroaches-on-us-nanotech-lead.html (accessed March 10, 2020). es_ES
dc.description.references Terekhov, A. I. (2017). Bibliometric spectroscopy of Russia’s nanotechnology: 2000–2014. Scientometrics, 110(3), 1217-1242. doi:10.1007/s11192-016-2234-5 es_ES
dc.description.references Lee, S., & Bozeman, B. (2005). The Impact of Research Collaboration on Scientific Productivity. Social Studies of Science, 35(5), 673-702. doi:10.1177/0306312705052359 es_ES
dc.description.references Wang, L., Jacob, J., & Li, Z. (2018). Exploring the spatial dimensions of nanotechnology development in China: the effects of funding and spillovers. Regional Studies, 53(2), 245-260. doi:10.1080/00343404.2018.1457216 es_ES
dc.description.references McFadyen, M. A., & Cannella, A. A. (2004). SOCIAL CAPITAL AND KNOWLEDGE CREATION: DIMINISHING RETURNS OF THE NUMBER AND STRENGTH OF EXCHANGE RELATIONSHIPS. Academy of Management Journal, 47(5), 735-746. doi:10.2307/20159615 es_ES
dc.description.references He, Z.-L., Geng, X.-S., & Campbell-Hunt, C. (2009). Research collaboration and research output: A longitudinal study of 65 biomedical scientists in a New Zealand university. Research Policy, 38(2), 306-317. doi:10.1016/j.respol.2008.11.011 es_ES
dc.description.references Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099 es_ES
dc.description.references Zhou, P., & Glänzel, W. (2010). In-depth analysis on China’s international cooperation in science. Scientometrics, 82(3), 597-612. doi:10.1007/s11192-010-0174-z es_ES
dc.description.references Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research domain from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23-38. doi:10.1007/s11192-007-1897-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem