- -

Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallés-García, Cristina es_ES
dc.contributor.author Gkaniatsou, Effrosyni es_ES
dc.contributor.author Santiago-Portillo, Andrea es_ES
dc.contributor.author Giménez-Marqués, Mónica es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Greneche, Jean-Marc es_ES
dc.contributor.author Steunou, Nathalie es_ES
dc.contributor.author Sicard, Clemence es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Serre, Christian es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2021-09-09T03:35:35Z
dc.date.available 2021-09-09T03:35:35Z
dc.date.issued 2020-09-07 es_ES
dc.identifier.issn 2050-7488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171688
dc.description.abstract [EN] This work highlights the benefit of designing mixed-metal (Cr/Fe) MOFs for enhanced chemical stability and catalytic activity. A robust and stable mixed-metal MIL-101(Cr/Fe) was prepared through a HF-free direct hydrothermal route with Fe(3+)content up to 21 wt%. The incorporation of Fe(3+)cations in the crystal structure was confirmed by(57)Fe Mossbauer spectrometry. The catalytic performance of the mixed metal MIL-101(Cr/Fe) was evaluated in the Prins reaction. MIL-101(Cr/Fe) exhibited a higher catalytic activity compared to MIL-101(Cr), improved chemical stability compared to MIL-101(Fe) and a higher catalytic activity for bulky substrates compared to MIL-100(Fe).In situinfra-red spectroscopy study suggests that the incorporation of Fe(3+)ions in MIL-101 structure leads to an increase in Lewis acid sites. It was thus concluded that the predominant role of Cr(3+)ions was to maintain the crystal structure, while Fe(3+)ions enhanced the catalytic activity. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2018-890237-CO2-R1 and Maria de Maeztu, CEX2019-000919-M), is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/083). S. N. thanks financial support by the Ministerio de Ciencia, Innovacion y Universidades (RTI 2018-099482-A-I00 project), Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: AICO/2019/214) project. E. G. thanks the ANR-11-LABEX-0039 (LabEx CHARM3AT) for financial support. M. G.-M thanks support from "la Caixa" Foundation (LCF/BQ/PI19/11690022) and Generalitat Valenciana (SEJI/2020/036). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/RTI2018-890237-CO2-R1 es_ES
dc.relation.ispartof Journal of Materials Chemistry A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0ta02991b es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//CEX2019-000919-M/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-LABX-0039/FR/CHimie des ARchitectures MoléculairesMultifonctionnelles et des MATériaux/CHARMMMAT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona//LCF%2FBQ%2FPI19%2F11690022/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//SEJI%2F2019%2F017/ES/ACTIVA: ALTERACIONES DE LA CONSCIENCIA. PROTOCOLOS DE INTERVENCIÓN Y VALORACIÓN ACTIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099482-A-I00/ES/DESCOMPOSICION FOTOCATALITICA DEL AGUA ASISTIDA POR LUZ VISIBLE EMPLEANDO MATERIALES NOVEDOSOS Y MULTIFUNCIONALES UIO-66%2F67/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F214/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vallés-García, C.; Gkaniatsou, E.; Santiago-Portillo, A.; Giménez-Marqués, M.; Alvaro Rodríguez, MM.; Greneche, J.; Steunou, N.... (2020). Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction. Journal of Materials Chemistry A. 8(33):17002-17011. https://doi.org/10.1039/d0ta02991b es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0ta02991b es_ES
dc.description.upvformatpinicio 17002 es_ES
dc.description.upvformatpfin 17011 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 33 es_ES
dc.relation.pasarela S\430055 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149). doi:10.1126/science.1230444 es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147 es_ES
dc.description.references Dhakshinamoorthy, A., Opanasenko, M., Čejka, J., & Garcia, H. (2013). Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science & Technology, 3(10), 2509. doi:10.1039/c3cy00350g es_ES
dc.description.references Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. doi:10.1039/c6ce02660e es_ES
dc.description.references Opanasenko, M., Dhakshinamoorthy, A., Hwang, Y. K., Chang, J.-S., Garcia, H., & Čejka, J. (2013). Superior Performance of Metal-Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 6(5), 865-871. doi:10.1002/cssc.201300032 es_ES
dc.description.references Férey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., & Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c es_ES
dc.description.references Santiago-Portillo, A., Blandez, J. F., Navalón, S., Álvaro, M., & García, H. (2017). Influence of the organic linker substituent on the catalytic activity of MIL-101(Cr) for the oxidative coupling of benzylamines to imines. Catalysis Science & Technology, 7(6), 1351-1362. doi:10.1039/c6cy02577c es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411 es_ES
dc.description.references Llewellyn, P. L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., … Férey, G. (2008). High Uptakes of CO2 and CH4 in Mesoporous Metal—Organic Frameworks MIL-100 and MIL-101. Langmuir, 24(14), 7245-7250. doi:10.1021/la800227x es_ES
dc.description.references Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130 es_ES
dc.description.references Horcajada, P., Chevreau, H., Heurtaux, D., Benyettou, F., Salles, F., Devic, T., … Serre, C. (2014). Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies. Chemical Communications, 50(52), 6872. doi:10.1039/c4cc02175d es_ES
dc.description.references Nouar, F., Devic, T., Chevreau, H., Guillou, N., Gibson, E., Clet, G., … Serre, C. (2012). Tuning the breathing behaviour of MIL-53 by cation mixing. Chemical Communications, 48(82), 10237. doi:10.1039/c2cc35348b es_ES
dc.description.references Wang, J.-H., Zhang, Y., Li, M., Yan, S., Li, D., & Zhang, X.-M. (2017). Solvent-Assisted Metal Metathesis: A Highly Efficient and Versatile Route towards Synthetically Demanding Chromium Metal-Organic Frameworks. Angewandte Chemie International Edition, 56(23), 6478-6482. doi:10.1002/anie.201701217 es_ES
dc.description.references Abednatanzi, S., Gohari Derakhshandeh, P., Depauw, H., Coudert, F.-X., Vrielinck, H., Van Der Voort, P., & Leus, K. (2019). Mixed-metal metal–organic frameworks. Chemical Society Reviews, 48(9), 2535-2565. doi:10.1039/c8cs00337h es_ES
dc.description.references Giménez-Marqués, M., Santiago-Portillo, A., Navalón, S., Álvaro, M., Briois, V., Nouar, F., … Serre, C. (2019). Exploring the catalytic performance of a series of bimetallic MIL-100(Fe, Ni) MOFs. Journal of Materials Chemistry A, 7(35), 20285-20292. doi:10.1039/c9ta01948k es_ES
dc.description.references Masoomi, M. Y., Morsali, A., Dhakshinamoorthy, A., & Garcia, H. (2019). Mixed‐Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie International Edition, 58(43), 15188-15205. doi:10.1002/anie.201902229 es_ES
dc.description.references Vu, T. A., Le, G. H., Dao, C. D., Dang, L. Q., Nguyen, K. T., Dang, P. T., … Lee, G. D. (2014). Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation. RSC Adv., 4(78), 41185-41194. doi:10.1039/c4ra06522k es_ES
dc.description.references Tanasaro, T., Adpakpang, K., Ittisanronnachai, S., Faungnawakij, K., Butburee, T., Wannapaiboon, S., … Bureekaew, S. (2017). Control of Polymorphism of Metal–Organic Frameworks Using Mixed-Metal Approach. Crystal Growth & Design, 18(1), 16-21. doi:10.1021/acs.cgd.7b01193 es_ES
dc.description.references Surblé, S., Serre, C., Mellot-Draznieks, C., Millange, F., & Férey, G. (2006). A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun., (3), 284-286. doi:10.1039/b512169h es_ES
dc.description.references Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 124(45), 13519-13526. doi:10.1021/ja0276974 es_ES
dc.description.references Stavitski, E., Goesten, M., Juan-Alcañiz, J., Martinez-Joaristi, A., Serra-Crespo, P., Petukhov, A. V., … Kapteijn, F. (2011). Kinetic Control of Metal-Organic Framework Crystallization Investigated by Time-Resolved In Situ X-Ray Scattering. Angewandte Chemie International Edition, 50(41), 9624-9628. doi:10.1002/anie.201101757 es_ES
dc.description.references Castillo-Blas, C., Snejko, N., de la Peña-O’Shea, V. A., Gallardo, J., Gutiérrez-Puebla, E., Monge, M. A., & Gándara, F. (2016). Crystal phase competition by addition of a second metal cation in solid solution metal–organic frameworks. Dalton Transactions, 45(10), 4327-4337. doi:10.1039/c5dt03856a es_ES
dc.description.references Rallapalli, P. B. S., Raj, M. C., Senthilkumar, S., Somani, R. S., & Bajaj, H. C. (2015). HF-free synthesis of MIL-101(Cr) and its hydrogen adsorption studies. Environmental Progress & Sustainable Energy, 35(2), 461-468. doi:10.1002/ep.12239 es_ES
dc.description.references Wickenheisser, M., Herbst, A., Tannert, R., Milow, B., & Janiak, C. (2015). Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe,Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous and Mesoporous Materials, 215, 143-153. doi:10.1016/j.micromeso.2015.05.017 es_ES
dc.description.references Yang, J., Zhao, Q., Li, J., & Dong, J. (2010). Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior. Microporous and Mesoporous Materials, 130(1-3), 174-179. doi:10.1016/j.micromeso.2009.11.001 es_ES
dc.description.references Abeykoon, B., Grenèche, J.-M., Jeanneau, E., Chernyshov, D., Goutaudier, C., Demessence, A., … Fateeva, A. (2017). Tuning the iron redox state inside a microporous porphyrinic metal organic framework. Dalton Transactions, 46(2), 517-523. doi:10.1039/c6dt04208b es_ES
dc.description.references Férey, G., Millange, F., Morcrette, M., Serre, C., Doublet, M.-L., Grenèche, J.-M., & Tarascon, J.-M. (2007). Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angewandte Chemie International Edition, 46(18), 3259-3263. doi:10.1002/anie.200605163 es_ES
dc.description.references Horcajada, P., Surblé, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., … Férey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325b es_ES
dc.description.references Delolo, F. G., Oliveira, K. C. B., dos Santos, E. N., & Gusevskaya, E. V. (2019). Hydroformylation of biomass-based hydroxyolefins in eco-friendly solvents: New fragrances from myrtenol and nopol. Molecular Catalysis, 462, 1-9. doi:10.1016/j.mcat.2018.10.011 es_ES
dc.description.references Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., … Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184. doi:10.1039/c7cs00033b es_ES
dc.description.references Skobelev, I. Y., Kovalenko, K. A., Fedin, V. P., Sorokin, A. B., & Kholdeeva, O. A. (2013). Allylic oxdation of alkenes with molecular oxygen catalyzed by porous coordination polymers Fe-MIL-101 and Cr-MIL-101. Kinetics and Catalysis, 54(5), 607-614. doi:10.1134/s0023158413050169 es_ES
dc.description.references Skobelev, I. Y., Sorokin, A. B., Kovalenko, K. A., Fedin, V. P., & Kholdeeva, O. A. (2013). Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis, 298, 61-69. doi:10.1016/j.jcat.2012.11.003 es_ES
dc.description.references Gómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862j es_ES
dc.description.references Vimont, A., Thibault-Starzyk, F., & Daturi, M. (2010). Analysing and understanding the active site by IR spectroscopy. Chemical Society Reviews, 39(12), 4928. doi:10.1039/b919543m es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Horcajada, P., Gibson, E., Vishnuvarthan, M., Vimont, A., … Garcia, H. (2012). Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2(10), 2060-2065. doi:10.1021/cs300345b es_ES
dc.description.references Leclerc, H., Vimont, A., Lavalley, J.-C., Daturi, M., Wiersum, A. D., Llwellyn, P. L., … Serre, C. (2011). Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 13(24), 11748. doi:10.1039/c1cp20502a es_ES
dc.description.references Vimont, A., Goupil, J.-M., Lavalley, J.-C., Daturi, M., Surblé, S., Serre, C., … Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218-3227. doi:10.1021/ja056906s es_ES
dc.description.references Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t es_ES
dc.description.references Barzetti, T., Selli, E., Moscotti, D., & Forni, L. (1996). Pyridine and ammonia as probes for FTIR analysis of solid acid catalysts. Journal of the Chemical Society, Faraday Transactions, 92(8), 1401. doi:10.1039/ft9969201401 es_ES
dc.description.references Horcajada, P., Salles, F., Wuttke, S., Devic, T., Heurtaux, D., Maurin, G., … Serre, C. (2011). How Linker’s Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88. Journal of the American Chemical Society, 133(44), 17839-17847. doi:10.1021/ja206936e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem