- -

Brillouin wavelength-selective all-optical polarization conversion

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Brillouin wavelength-selective all-optical polarization conversion

Show simple item record

Files in this item

dc.contributor.author Samaniego, Diego es_ES
dc.contributor.author Vidal Rodriguez, Borja es_ES
dc.date.accessioned 2021-09-09T03:36:15Z
dc.date.available 2021-09-09T03:36:15Z
dc.date.issued 2020-04-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/171702
dc.description.abstract [EN] The manipulation of the polarization properties of light in guided media is crucial in many classical and quantum optical systems. However, the capability of current technology to finely define the state of polarization of particular wavelengths is far from the level of maturity in amplitude control. Here, we introduce a light-by-light polarization control mechanism with wavelength selectivity based on the change of the phase retardance by means of stimulated Brillouin scattering. Experiments show that any point on the Poincare sphere can be reached from an arbitrary input state of polarization with little variation of the signal amplitude (<2.5 dB). Unlike other Brillouin processing schemes, the degradation of the noise figure is small (1.5 dB for a full 2 pi rotation). This all-optical polarization controller can forge the development of new polarization-based techniques in optical communication, laser engineering, sensing, quantum systems, and light-based probing of chemical and biological systems. (C) 2020 Chinese Laser Press es_ES
dc.description.sponsorship Ministerio de Ciencia, Innovacion y Universidades (TEC2016-80906-R). es_ES
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation AEI/TEC2016-80906-R es_ES
dc.relation.ispartof Photonics Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Brillouin wavelength-selective all-optical polarization conversion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/PRJ.371513 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Samaniego, D.; Vidal Rodriguez, B. (2020). Brillouin wavelength-selective all-optical polarization conversion. Photonics Research. 8(4):440-447. https://doi.org/10.1364/PRJ.371513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/PRJ.371513 es_ES
dc.description.upvformatpinicio 440 es_ES
dc.description.upvformatpfin 447 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2327-9125 es_ES
dc.relation.pasarela S\399810 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.description.references Wang, X.-L., Luo, Y.-H., Huang, H.-L., Chen, M.-C., Su, Z.-E., Liu, C., … Pan, J.-W. (2018). 18-Qubit Entanglement with Six Photons’ Three Degrees of Freedom. Physical Review Letters, 120(26). doi:10.1103/physrevlett.120.260502 es_ES
dc.description.references Preece, D., Keen, S., Botvinick, E., Bowman, R., Padgett, M., & Leach, J. (2008). Independent polarisation control of multiple optical traps. Optics Express, 16(20), 15897. doi:10.1364/oe.16.015897 es_ES
dc.description.references Heismann, F., & Whalen, M. S. (1991). Broadband reset-free automatic polarisation controller. Electronics Letters, 27(4), 377. doi:10.1049/el:19910237 es_ES
dc.description.references Koch, B., Noé, R., Sandel, D., & Mirvoda, V. (2011). 100 krad/s endless polarisation tracking with miniaturised module card. Electronics Letters, 47(14), 813-814. doi:10.1049/el.2011.1522 es_ES
dc.description.references Shmilovitch, Z., Primerov, N., Zadok, A., Eyal, A., Chin, S., Thevenaz, L., & Tur, M. (2011). Dual-pump push-pull polarization control using stimulated Brillouin scattering. Optics Express, 19(27), 25873. doi:10.1364/oe.19.025873 es_ES
dc.description.references Vidal, B. (2012). Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling. Optics Letters, 37(24), 5055. doi:10.1364/ol.37.005055 es_ES
dc.description.references Stiller, B., Morin, P., Nguyen, D. M., Fatome, J., Pitois, S., Lantz, E., … Sylvestre, T. (2012). Demonstration of polarization pulling using a fiber-optic parametric amplifier. Optics Express, 20(24), 27248. doi:10.1364/oe.20.027248 es_ES
dc.description.references Heebner, J. E., Bennink, R. S., Boyd, R. W., & Fisher, R. A. (2000). Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling. Optics Letters, 25(4), 257. doi:10.1364/ol.25.000257 es_ES
dc.description.references Kozlov, V. V., Nuño, J., & Wabnitz, S. (2011). Theory of lossless polarization attraction in telecommunication fibers: erratum. Journal of the Optical Society of America B, 29(1), 153. doi:10.1364/josab.29.000153 es_ES
dc.description.references Pitois, S., Millot, G., & Wabnitz, S. (2001). Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments. Journal of the Optical Society of America B, 18(4), 432. doi:10.1364/josab.18.000432 es_ES
dc.description.references Fatome, J., Pitois, S., Morin, P., & Millot, G. (2010). Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications. Optics Express, 18(15), 15311. doi:10.1364/oe.18.015311 es_ES
dc.description.references Kozlov, V. V., Barozzi, M., Vannucci, A., & Wabnitz, S. (2013). Lossless polarization attraction of copropagating beams in telecom fibers. Journal of the Optical Society of America B, 30(3), 530. doi:10.1364/josab.30.000530 es_ES
dc.description.references DeLong, A., Astar, W., Mahmood, T., & Carter, G. M. (2017). Polarization attraction of 10-Gb/s NRZ-BPSK signal in a highly nonlinear fiber. Optics Express, 25(21), 25625. doi:10.1364/oe.25.025625 es_ES
dc.description.references Loayssa, A., & Lahoz, F. J. (2006). Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation. IEEE Photonics Technology Letters, 18(1), 208-210. doi:10.1109/lpt.2005.861307 es_ES
dc.description.references Pagani, M., Marpaung, D., Choi, D.-Y., Madden, S. J., Luther-Davies, B., & Eggleton, B. J. (2014). Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Optics Express, 22(23), 28810. doi:10.1364/oe.22.028810 es_ES
dc.description.references Galtarossa, A., Palmieri, L., Santagiustina, M., Schenato, L., & Ursini, L. (2008). Polarized Brillouin Amplification in Randomly Birefringent and Unidirectionally Spun Fibers. IEEE Photonics Technology Letters, 20(16), 1420-1422. doi:10.1109/lpt.2008.927884 es_ES
dc.description.references Liao, M., Chaudhari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., … Misumi, T. (2009). Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity. Optics Express, 17(24), 21608. doi:10.1364/oe.17.021608 es_ES
dc.description.references Morrison, B., Casas-Bedoya, A., Ren, G., Vu, K., Liu, Y., Zarifi, A., … Eggleton, B. J. (2017). Compact Brillouin devices through hybrid integration on silicon. Optica, 4(8), 847. doi:10.1364/optica.4.000847 es_ES
dc.description.references Chen, L., & Bao, X. (1998). Analytical and numerical solutions for steady state stimulated Brillouin scattering in a single-mode fiber. Optics Communications, 152(1-3), 65-70. doi:10.1016/s0030-4018(98)00147-3 es_ES


This item appears in the following Collection(s)

Show simple item record