- -

Incremental Learning approaches to Biomedical decision problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Incremental Learning approaches to Biomedical decision problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor García Gómez, Juan Miguel es_ES
dc.contributor.advisor Robles Viejo, Monserrat es_ES
dc.contributor.author Tortajada Velert, Salvador es_ES
dc.date.accessioned 2012-09-21T10:50:44Z
dc.date.available 2012-09-21T10:50:44Z
dc.date.created 2012-09-17T08:00:00Z es_ES
dc.date.issued 2012-09-21T10:50:38Z es_ES
dc.identifier.uri http://hdl.handle.net/10251/17195
dc.description.abstract During the last decade, a new trend in medicine is transforming the nature of healthcare from reactive to proactive. This new paradigm is changing into a personalized medicine where the prevention, diagnosis, and treatment of disease is focused on individual patients. This paradigm is known as P4 medicine. Among other key benefits, P4 medicine aspires to detect diseases at an early stage and introduce diagnosis to stratify patients and diseases to select the optimal therapy based on individual observations and taking into account the patient outcomes to empower the physician, the patient, and their communication. This paradigm transformation relies on the availability of complex multi-level biomedical data that are increasingly accurate, since it is possible to find exactly the needed information, but also exponentially noisy, since the access to that information is more and more challenging. In order to take advantage of this information, an important effort is being made in the last decades to digitalize medical records and to develop new mathematical and computational methods for extracting maximum knowledge from patient records, building dynamic and disease-predictive models from massive amounts of integrated clinical and biomedical data. This requirement enables the use of computer-assisted Clinical Decision Support Systems for the management of individual patients. The Clinical Decision Support System (CDSS) are computational systems that provide precise and specific knowledge for the medical decisions to be adopted for diagnosis, prognosis, treatment and management of patients. The CDSS are highly related to the concept of evidence-based medicine since they infer medical knowledge from the biomedical databases and the acquisition protocols that are used for the development of the systems, give computational support based on evidence for the clinical practice, and evaluate the performance and the added value of the solution for each specific medical problem. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.source Riunet es_ES
dc.subject Incremental learning es_ES
dc.subject Brain tumour es_ES
dc.subject Pattern recognition es_ES
dc.subject Bayesian inference es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Incremental Learning approaches to Biomedical decision problems
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/17195 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Tortajada Velert, S. (2012). Incremental Learning approaches to Biomedical decision problems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17195 es_ES
dc.description.accrualMethod Palancia es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.tesis 3920 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem