Mostrar el registro sencillo del ítem
dc.contributor.author | Fuente, David | es_ES |
dc.contributor.author | Garibo i Orts, Óscar | es_ES |
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.contributor.author | Urchueguía Schölzel, Javier Fermín | es_ES |
dc.date.accessioned | 2021-09-11T03:31:18Z | |
dc.date.available | 2021-09-11T03:31:18Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172144 | |
dc.description.abstract | [EN] The recent success of biological engineering is due to a tremendous amount of research effort and the increasing number of market opportunities. Indeed, this has been partially possible due to the contribution of advanced mathematical tools and the application of engineering principles in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show how models can support research and motivate students to apply mathematics in their future careers. A genetic four-state machine is analyzed using three frameworks: Deterministic and stochastic modeling through di erential and master equations, and a spatial approach via a cellular automaton. Each theoretical framework sheds light on the problem in a complementary way. It helps in understanding basic concepts of modeling and engineering, such as noise, robustness, and reaction¿di usion systems. The designed automaton could be part of a more complex system of modules conforming future bio-computers and it is a paradigmatic example of how models can assist teachers in multidisciplinary education. | es_ES |
dc.description.sponsorship | D.F. was supported by an internal grant from Palacky University Olomouc (no. IGA_PrF_2020_028) and J.A.C. by MEC, grant number MTM2016-75963-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mathematics | es_ES |
dc.subject | Synthetic biology | es_ES |
dc.subject | Education | es_ES |
dc.subject | Finite state machine | es_ES |
dc.subject | Noise | es_ES |
dc.subject | Cellular automaton | es_ES |
dc.subject | Reaction-diffusion system | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8081362 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Fuente, D.; Garibo I Orts, Ó.; Conejero, JA.; Urchueguía Schölzel, JF. (2020). Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research. Mathematics. 8(8):1-20. https://doi.org/10.3390/math8081362 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8081362 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\432482 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775 | es_ES |
dc.description.references | Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33(7), 1395-1402. doi:10.1016/j.biotechadv.2015.02.011 | es_ES |
dc.description.references | Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2014). Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. ACS Synthetic Biology, 4(5), 535-546. doi:10.1021/sb500286r | es_ES |
dc.description.references | Katz, L., Chen, Y. Y., Gonzalez, R., Peterson, T. C., Zhao, H., & Baltz, R. H. (2018). Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 45(7), 449-461. doi:10.1007/s10295-018-2056-y | es_ES |
dc.description.references | Matheson, S. (2017). Engineering a Biological Revolution. Cell, 168(3), 329-332. doi:10.1016/j.cell.2017.01.001 | es_ES |
dc.description.references | Clarke, L., & Kitney, R. (2020). Developing synthetic biology for industrial biotechnology applications. Biochemical Society Transactions, 48(1), 113-122. doi:10.1042/bst20190349 | es_ES |
dc.description.references | Huynh, L., & Tagkopoulos, I. (2014). Optimal Part and Module Selection for Synthetic Gene Circuit Design Automation. ACS Synthetic Biology, 3(8), 556-564. doi:10.1021/sb400139h | es_ES |
dc.description.references | McDaniel, R., & Weiss, R. (2005). Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biotechnology, 16(4), 476-483. doi:10.1016/j.copbio.2005.07.002 | es_ES |
dc.description.references | Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073 | es_ES |
dc.description.references | Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221-231. doi:10.1016/s0955-0674(03)00017-6 | es_ES |
dc.description.references | Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601 | es_ES |
dc.description.references | Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120 | es_ES |
dc.description.references | Bybee, R. W. (2010). What Is STEM Education? Science, 329(5995), 996-996. doi:10.1126/science.1194998 | es_ES |
dc.description.references | Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657-3662. doi:10.1016/j.promfg.2015.07.761 | es_ES |
dc.description.references | Dai, T., & Cromley, J. G. (2014). Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology, 39(3), 233-247. doi:10.1016/j.cedpsych.2014.06.003 | es_ES |
dc.description.references | Willaert, S. S. ., de Graaf, R., & Minderhoud, S. (1998). Collaborative engineering: A case study of Concurrent Engineering in a wider context. Journal of Engineering and Technology Management, 15(1), 87-109. doi:10.1016/s0923-4748(97)00026-x | es_ES |
dc.description.references | Machado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., & Rocha, I. (2011). Modeling formalisms in Systems Biology. AMB Express, 1(1), 45. doi:10.1186/2191-0855-1-45 | es_ES |
dc.description.references | Rojo Robas, V., Madariaga, J. M., & Villarroel, J. D. (2020). Secondary Education Students’ Beliefs about Mathematics and Their Repercussions on Motivation. Mathematics, 8(3), 368. doi:10.3390/math8030368 | es_ES |
dc.description.references | Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(S6). doi:10.1186/1471-2105-8-s6-s9 | es_ES |
dc.description.references | Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770-780. doi:10.1038/nrm2503 | es_ES |
dc.description.references | Casini, A., Storch, M., Baldwin, G. S., & Ellis, T. (2015). Bricks and blueprints: methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 16(9), 568-576. doi:10.1038/nrm4014 | es_ES |
dc.description.references | Appleton, E., Madsen, C., Roehner, N., & Densmore, D. (2017). Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 9(4), a023978. doi:10.1101/cshperspect.a023978 | es_ES |
dc.description.references | Selberg, J., Gomez, M., & Rolandi, M. (2018). The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 7(3), 231-244. doi:10.1016/j.cels.2018.08.007 | es_ES |
dc.description.references | Britton, N. F., Bulai, I. M., Saussure, S., Holst, N., & Venturino, E. (2019). Can aphids be controlled by fungus? A mathematical model. Applied Mathematics and Nonlinear Sciences, 4(1), 79-92. doi:10.2478/amns.2019.1.00009 | es_ES |
dc.description.references | Rojas, C., & Belmonte-Beitia, J. (2018). Optimal control problems for differential equations applied to tumor growth: state of the art. Applied Mathematics and Nonlinear Sciences, 3(2), 375-402. doi:10.21042/amns.2018.2.00029 | es_ES |
dc.description.references | Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601. doi:10.1088/0034-4885/77/2/026601 | es_ES |
dc.description.references | Székely, T., & Burrage, K. (2014). Stochastic simulation in systems biology. Computational and Structural Biotechnology Journal, 12(20-21), 14-25. doi:10.1016/j.csbj.2014.10.003 | es_ES |
dc.description.references | Bessonov, N., Bocharov, G., Meyerhans, A., Popov, V., & Volpert, V. (2020). Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 8(1), 117. doi:10.3390/math8010117 | es_ES |
dc.description.references | Mealy, G. H. (1955). A method for synthesizing sequential circuits. The Bell System Technical Journal, 34(5), 1045-1079. doi:10.1002/j.1538-7305.1955.tb03788.x | es_ES |
dc.description.references | Marchisio, M. A. (2014). Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology, 2. doi:10.3389/fbioe.2014.00042 | es_ES |
dc.description.references | Stefan, M. I., & Le Novère, N. (2013). Cooperative Binding. PLoS Computational Biology, 9(6), e1003106. doi:10.1371/journal.pcbi.1003106 | es_ES |
dc.description.references | Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919 | es_ES |
dc.description.references | Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008 | es_ES |
dc.description.references | Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3 | es_ES |
dc.description.references | Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637 | es_ES |
dc.description.references | Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based Simulation Platforms: Review and Development Recommendations. SIMULATION, 82(9), 609-623. doi:10.1177/0037549706073695 | es_ES |
dc.description.references | TURING, A. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1-2), 153-197. doi:10.1016/s0092-8240(05)80008-4 | es_ES |
dc.description.references | Henkel, J., Wolf, W., & Chakradhar, S. (s. f.). On-chip networks: a scalable, communication-centric embedded system design paradigm. 17th International Conference on VLSI Design. Proceedings. doi:10.1109/icvd.2004.1261037 | es_ES |
dc.subject.ods | 04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos | es_ES |