- -

Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuente, David es_ES
dc.contributor.author Garibo i Orts, Óscar es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2021-09-11T03:31:18Z
dc.date.available 2021-09-11T03:31:18Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172144
dc.description.abstract [EN] The recent success of biological engineering is due to a tremendous amount of research effort and the increasing number of market opportunities. Indeed, this has been partially possible due to the contribution of advanced mathematical tools and the application of engineering principles in genetic-circuit development. In this work, we use a rationally designed genetic circuit to show how models can support research and motivate students to apply mathematics in their future careers. A genetic four-state machine is analyzed using three frameworks: Deterministic and stochastic modeling through di erential and master equations, and a spatial approach via a cellular automaton. Each theoretical framework sheds light on the problem in a complementary way. It helps in understanding basic concepts of modeling and engineering, such as noise, robustness, and reaction¿di usion systems. The designed automaton could be part of a more complex system of modules conforming future bio-computers and it is a paradigmatic example of how models can assist teachers in multidisciplinary education. es_ES
dc.description.sponsorship D.F. was supported by an internal grant from Palacky University Olomouc (no. IGA_PrF_2020_028) and J.A.C. by MEC, grant number MTM2016-75963-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mathematics es_ES
dc.subject Synthetic biology es_ES
dc.subject Education es_ES
dc.subject Finite state machine es_ES
dc.subject Noise es_ES
dc.subject Cellular automaton es_ES
dc.subject Reaction-diffusion system es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8081362 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2016-75963-P/ES/DINAMICA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Fuente, D.; Garibo I Orts, Ó.; Conejero, JA.; Urchueguía Schölzel, JF. (2020). Rational design of a genetic finite state machine: Combining biology, engineering, and mathematics for bio-computer research. Mathematics. 8(8):1-20. https://doi.org/10.3390/math8081362 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8081362 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\432482 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11(5), 367-379. doi:10.1038/nrg2775 es_ES
dc.description.references Jullesson, D., David, F., Pfleger, B., & Nielsen, J. (2015). Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 33(7), 1395-1402. doi:10.1016/j.biotechadv.2015.02.011 es_ES
dc.description.references Bereza-Malcolm, L. T., Mann, G., & Franks, A. E. (2014). Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. ACS Synthetic Biology, 4(5), 535-546. doi:10.1021/sb500286r es_ES
dc.description.references Katz, L., Chen, Y. Y., Gonzalez, R., Peterson, T. C., Zhao, H., & Baltz, R. H. (2018). Synthetic biology advances and applications in the biotechnology industry: a perspective. Journal of Industrial Microbiology and Biotechnology, 45(7), 449-461. doi:10.1007/s10295-018-2056-y es_ES
dc.description.references Matheson, S. (2017). Engineering a Biological Revolution. Cell, 168(3), 329-332. doi:10.1016/j.cell.2017.01.001 es_ES
dc.description.references Clarke, L., & Kitney, R. (2020). Developing synthetic biology for industrial biotechnology applications. Biochemical Society Transactions, 48(1), 113-122. doi:10.1042/bst20190349 es_ES
dc.description.references Huynh, L., & Tagkopoulos, I. (2014). Optimal Part and Module Selection for Synthetic Gene Circuit Design Automation. ACS Synthetic Biology, 3(8), 556-564. doi:10.1021/sb400139h es_ES
dc.description.references McDaniel, R., & Weiss, R. (2005). Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biotechnology, 16(4), 476-483. doi:10.1016/j.copbio.2005.07.002 es_ES
dc.description.references Andrianantoandro, E., Basu, S., Karig, D. K., & Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Molecular Systems Biology, 2(1). doi:10.1038/msb4100073 es_ES
dc.description.references Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15(2), 221-231. doi:10.1016/s0955-0674(03)00017-6 es_ES
dc.description.references Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601-644. doi:10.1103/revmodphys.55.601 es_ES
dc.description.references Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120-123. doi:10.1038/scientificamerican1070-120 es_ES
dc.description.references Bybee, R. W. (2010). What Is STEM Education? Science, 329(5995), 996-996. doi:10.1126/science.1194998 es_ES
dc.description.references Swaid, S. I. (2015). Bringing Computational Thinking to STEM Education. Procedia Manufacturing, 3, 3657-3662. doi:10.1016/j.promfg.2015.07.761 es_ES
dc.description.references Dai, T., & Cromley, J. G. (2014). Changes in implicit theories of ability in biology and dropout from STEM majors: A latent growth curve approach. Contemporary Educational Psychology, 39(3), 233-247. doi:10.1016/j.cedpsych.2014.06.003 es_ES
dc.description.references Willaert, S. S. ., de Graaf, R., & Minderhoud, S. (1998). Collaborative engineering: A case study of Concurrent Engineering in a wider context. Journal of Engineering and Technology Management, 15(1), 87-109. doi:10.1016/s0923-4748(97)00026-x es_ES
dc.description.references Machado, D., Costa, R. S., Rocha, M., Ferreira, E. C., Tidor, B., & Rocha, I. (2011). Modeling formalisms in Systems Biology. AMB Express, 1(1), 45. doi:10.1186/2191-0855-1-45 es_ES
dc.description.references Rojo Robas, V., Madariaga, J. M., & Villarroel, J. D. (2020). Secondary Education Students’ Beliefs about Mathematics and Their Repercussions on Motivation. Mathematics, 8(3), 368. doi:10.3390/math8030368 es_ES
dc.description.references Schlitt, T., & Brazma, A. (2007). Current approaches to gene regulatory network modelling. BMC Bioinformatics, 8(S6). doi:10.1186/1471-2105-8-s6-s9 es_ES
dc.description.references Karlebach, G., & Shamir, R. (2008). Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology, 9(10), 770-780. doi:10.1038/nrm2503 es_ES
dc.description.references Casini, A., Storch, M., Baldwin, G. S., & Ellis, T. (2015). Bricks and blueprints: methods and standards for DNA assembly. Nature Reviews Molecular Cell Biology, 16(9), 568-576. doi:10.1038/nrm4014 es_ES
dc.description.references Appleton, E., Madsen, C., Roehner, N., & Densmore, D. (2017). Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 9(4), a023978. doi:10.1101/cshperspect.a023978 es_ES
dc.description.references Selberg, J., Gomez, M., & Rolandi, M. (2018). The Potential for Convergence between Synthetic Biology and Bioelectronics. Cell Systems, 7(3), 231-244. doi:10.1016/j.cels.2018.08.007 es_ES
dc.description.references Britton, N. F., Bulai, I. M., Saussure, S., Holst, N., & Venturino, E. (2019). Can aphids be controlled by fungus? A mathematical model. Applied Mathematics and Nonlinear Sciences, 4(1), 79-92. doi:10.2478/amns.2019.1.00009 es_ES
dc.description.references Rojas, C., & Belmonte-Beitia, J. (2018). Optimal control problems for differential equations applied to tumor growth: state of the art. Applied Mathematics and Nonlinear Sciences, 3(2), 375-402. doi:10.21042/amns.2018.2.00029 es_ES
dc.description.references Tsimring, L. S. (2014). Noise in biology. Reports on Progress in Physics, 77(2), 026601. doi:10.1088/0034-4885/77/2/026601 es_ES
dc.description.references Székely, T., & Burrage, K. (2014). Stochastic simulation in systems biology. Computational and Structural Biotechnology Journal, 12(20-21), 14-25. doi:10.1016/j.csbj.2014.10.003 es_ES
dc.description.references Bessonov, N., Bocharov, G., Meyerhans, A., Popov, V., & Volpert, V. (2020). Nonlocal Reaction–Diffusion Model of Viral Evolution: Emergence of Virus Strains. Mathematics, 8(1), 117. doi:10.3390/math8010117 es_ES
dc.description.references Mealy, G. H. (1955). A method for synthesizing sequential circuits. The Bell System Technical Journal, 34(5), 1045-1079. doi:10.1002/j.1538-7305.1955.tb03788.x es_ES
dc.description.references Marchisio, M. A. (2014). Parts & Pools: A Framework for Modular Design of Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology, 2. doi:10.3389/fbioe.2014.00042 es_ES
dc.description.references Stefan, M. I., & Le Novère, N. (2013). Cooperative Binding. PLoS Computational Biology, 9(6), e1003106. doi:10.1371/journal.pcbi.1003106 es_ES
dc.description.references Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic Gene Expression in a Single Cell. Science, 297(5584), 1183-1186. doi:10.1126/science.1070919 es_ES
dc.description.references Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008 es_ES
dc.description.references Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3 es_ES
dc.description.references Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637 es_ES
dc.description.references Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based Simulation Platforms: Review and Development Recommendations. SIMULATION, 82(9), 609-623. doi:10.1177/0037549706073695 es_ES
dc.description.references TURING, A. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical Biology, 52(1-2), 153-197. doi:10.1016/s0092-8240(05)80008-4 es_ES
dc.description.references Henkel, J., Wolf, W., & Chakradhar, S. (s. f.). On-chip networks: a scalable, communication-centric embedded system design paradigm. 17th International Conference on VLSI Design. Proceedings. doi:10.1109/icvd.2004.1261037 es_ES
dc.subject.ods 04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem