Mostrar el registro sencillo del ítem
dc.contributor.author | Gallego, María Pilar | es_ES |
dc.contributor.author | Hauck, Peter | es_ES |
dc.contributor.author | Kazarin, Lev S. | es_ES |
dc.contributor.author | Martínez-Pastor, Ana | es_ES |
dc.contributor.author | Pérez-Ramos, María Dolores | es_ES |
dc.date.accessioned | 2021-09-11T03:31:21Z | |
dc.date.available | 2021-09-11T03:31:21Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172145 | |
dc.description.abstract | [EN] For a non-empty class of groups L, a finite group G = AB is said to be an L-connected product of the subgroups A and B if < a, b > is an element of L for all a is an element of A and b is an element of B. In a previous paper, we prove that, for such a product, when L = S is the class of finite soluble groups, then [A, B] is soluble. This generalizes the theorem of Thompson that states the solubility of finite groups whose two-generated subgroups are soluble. In the present paper, our result is applied to extend to finite groups previous research about finite groups in the soluble universe. In particular, we characterize connected products for relevant classes of groups, among others, the class of metanilpotent groups and the class of groups with nilpotent derived subgroup. Additionally, we give local descriptions of relevant subgroups of finite groups. | es_ES |
dc.description.sponsorship | Research supported by Proyectos PROMETEO/2017/057 from the Generalitat Valenciana (Valencian Community, Spain), and PGC2018-096872-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades, Spain, and FEDER, European Union; and third author also by Project VIP-008 of Yaroslavl P. Demidov State University. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Finite groups | es_ES |
dc.subject | Products of subgroups | es_ES |
dc.subject | Two-generated subgroups | es_ES |
dc.subject | L-connection | es_ES |
dc.subject | Fitting classes | es_ES |
dc.subject | Fitting series | es_ES |
dc.subject | Formations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Products of finite connected subgroups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8091498 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F057/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096872-B-I00/ES/GRUPOS, ESTRUCTURA LOCAL-GLOBAL E INVARIANTES NUMERICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Gallego, MP.; Hauck, P.; Kazarin, LS.; Martínez-Pastor, A.; Pérez-Ramos, MD. (2020). Products of finite connected subgroups. Mathematics. 8(9):1-8. https://doi.org/10.3390/math8091498 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8091498 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\417838 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Hauck, P., Kazarin, L. S., Martínez-Pastor, A., & Pérez-Ramos, M. D. (2020). Thompson-like characterization of solubility for products of finite groups. Annali di Matematica Pura ed Applicata (1923 -), 200(1), 337-362. doi:10.1007/s10231-020-00998-z | es_ES |
dc.description.references | Thompson, J. G. (1968). Nonsolvable finite groups all of whose local subgroups are solvable. Bulletin of the American Mathematical Society, 74(3), 383-437. doi:10.1090/s0002-9904-1968-11953-6 | es_ES |
dc.description.references | Flavell, P. (1995). Finite groups in which every two elements generate a soluble subgroup. Inventiones Mathematicae, 121(1), 279-285. doi:10.1007/bf01884299 | es_ES |
dc.description.references | Guralnick, R., Kunyavskiĭ, B., Plotkin, E., & Shalev, A. (2006). Thompson-like characterizations of the solvable radical. Journal of Algebra, 300(1), 363-375. doi:10.1016/j.jalgebra.2006.03.001 | es_ES |
dc.description.references | CAROCCA, A. (2000). SOLVABILITY OF FACTORIZED FINITE GROUPS. Glasgow Mathematical Journal, 42(2), 271-274. doi:10.1017/s0017089500020139 | es_ES |
dc.description.references | Carocca, A. (1996). A note on the product of F-subgroups in a finite group. Proceedings of the Edinburgh Mathematical Society, 39(1), 37-42. doi:10.1017/s0013091500022756 | es_ES |
dc.description.references | Ballester-Bolinches, A., & Pedraza-Aguilera, M. C. (1999). On finite soluble products of 𝒩-connected groups. Journal of Group Theory, 2(3). doi:10.1515/jgth.1999.018 | es_ES |
dc.description.references | Beidleman, J., & Heineken, H. (2004). Pairwise -connected Products of Certain Classes of Finite Groups. Communications in Algebra, 32(12), 4741-4752. doi:10.1081/agb-200036743 | es_ES |
dc.description.references | Hauck, P., Martínez-Pastor, A., & Pérez-Ramos, M. D. (2003). Products of $\scr N$-connected groups. Illinois Journal of Mathematics, 47(4). doi:10.1215/ijm/1258138089 | es_ES |
dc.description.references | Gállego, M. P., Hauck, P., & Pérez-Ramos, M. D. (2008). Soluble products of connected subgroups. Revista Matemática Iberoamericana, 433-461. doi:10.4171/rmi/542 | es_ES |
dc.description.references | Gállego, M. P., Hauck, P., & Pérez-Ramos, M. D. (2008). On 2-generated subgroups and products of groups. Journal of Group Theory, 11(6). doi:10.1515/jgt.2008.054 | es_ES |
dc.description.references | Gállego, M. P., Hauck, P., & Pérez-Ramos, M. D. (2011). Saturated formations and products of connected subgroups. Journal of Algebra, 333(1), 105-119. doi:10.1016/j.jalgebra.2010.09.012 | es_ES |
dc.description.references | Gállego, M. P., Hauck, P., & Pérez-Ramos, M. D. (2016). 2-Engel relations between subgroups. Journal of Algebra, 447, 31-55. doi:10.1016/j.jalgebra.2015.08.030 | es_ES |
dc.description.references | GRUNEWALD, F., KUNYAVSKII, B., & PLOTKIN, E. (2013). CHARACTERIZATION OF SOLVABLE GROUPS AND SOLVABLE RADICAL. International Journal of Algebra and Computation, 23(05), 1011-1062. doi:10.1142/s0218196713300016 | es_ES |
dc.description.references | Flavell, P. (2002). A characterisation of F2(G). Journal of Algebra, 255(2), 271-287. doi:10.1016/s0021-8693(02)00033-9 | es_ES |
dc.description.references | Gross, F. (1973). Finite groups which are the product of two nilpotent subgroups. Bulletin of the Australian Mathematical Society, 9(2), 267-274. doi:10.1017/s0004972700043161 | es_ES |