dc.contributor.author |
Gregori Gregori, Valentín
|
es_ES |
dc.contributor.author |
Miñana, Juan-José
|
es_ES |
dc.contributor.author |
Roig, Bernardino
|
es_ES |
dc.contributor.author |
Sapena Piera, Almanzor
|
es_ES |
dc.date.accessioned |
2021-09-11T03:31:22Z |
|
dc.date.available |
2021-09-11T03:31:22Z |
|
dc.date.issued |
2020-06 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/172146 |
|
dc.description.abstract |
[EN] Here, we deal with the concept of fuzzy metric space(X,M,*), due to George and Veeramani. Based on the fuzzy diameter for a subset ofX, we introduce the notion of strong fuzzy diameter zero for a family of subsets. Then, we characterize nested sequences of subsets having strong fuzzy diameter zero using their fuzzy diameter. Examples of sequences of subsets which do or do not have strong fuzzy diameter zero are provided. Our main result is the following characterization: a fuzzy metric space is strongly complete if and only if every nested sequence of close subsets which has strong fuzzy diameter zero has a singleton intersection. Moreover, the standard fuzzy metric is studied as a particular case. Finally, this work points out a route of research in fuzzy fixed point theory. |
es_ES |
dc.description.sponsorship |
Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work was also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements Nos. 779776 and 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Mathematics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Fuzzy metric |
es_ES |
dc.subject |
Cauchy sequence |
es_ES |
dc.subject |
(Strong) convergence |
es_ES |
dc.subject |
Completeness |
es_ES |
dc.subject |
Fuzzy diameter |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
A Characterization of Strong Completeness in Fuzzy Metric Spaces |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/math8060861 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/779776/EU/Robotics Technology for Inspection of Ships/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-86372-C3-3-R/ES/METODOS SENSORIALES PARA LA MANIPULACION SUBMARINA MULTI-ROBOT/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/H2020/871260/EU/Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage Tanks/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/CAIB//PROCOE%2F4%2F2017/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095709-B-C21/ES/METRICAS DIFUSAS Y OPERADORES DE INDISTINGUIBILIDAD: APLICACIONES EN ROBOTICA/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Gregori Gregori, V.; Miñana, J.; Roig, B.; Sapena Piera, A. (2020). A Characterization of Strong Completeness in Fuzzy Metric Spaces. Mathematics. 8(6):1-11. https://doi.org/10.3390/math8060861 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/math8060861 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
11 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.identifier.eissn |
2227-7390 |
es_ES |
dc.relation.pasarela |
S\423092 |
es_ES |
dc.contributor.funder |
European Commission |
es_ES |
dc.contributor.funder |
Govern de les Illes Balears |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.contributor.funder |
European Regional Development Fund |
es_ES |
dc.description.references |
Menger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535 |
es_ES |
dc.description.references |
George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7 |
es_ES |
dc.description.references |
Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4 |
es_ES |
dc.description.references |
Gregori, V. (2002). On completion of fuzzy metric spaces. Fuzzy Sets and Systems, 130(3), 399-404. doi:10.1016/s0165-0114(02)00115-x |
es_ES |
dc.description.references |
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:10.1016/s0165-0114(86)80034-3 |
es_ES |
dc.description.references |
Gregori, V., Romaguera, S., & Veeramani, P. (2006). A note on intuitionistic fuzzy metric spaces☆. Chaos, Solitons & Fractals, 28(4), 902-905. doi:10.1016/j.chaos.2005.08.113 |
es_ES |
dc.description.references |
Gregori, V., & Sapena, A. (2018). Remarks to «on strong intuitionistic fuzzy metrics». Journal of Nonlinear Sciences and Applications, 11(02), 316-322. doi:10.22436/jnsa.011.02.12 |
es_ES |
dc.description.references |
Abu-Donia, H. M., Atia, H. A., & Khater, O. M. A. (2020). Common fixed point theorems in intuitionistic fuzzy metric spaces and intuitionistic (ϕ,ψ)-contractive mappings. Journal of Nonlinear Sciences and Applications, 13(06), 323-329. doi:10.22436/jnsa.013.06.03 |
es_ES |
dc.description.references |
Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010 |
es_ES |
dc.description.references |
Miheţ, D. (2007). On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets and Systems, 158(8), 915-921. doi:10.1016/j.fss.2006.11.012 |
es_ES |
dc.description.references |
Wardowski, D. (2013). Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 222, 108-114. doi:10.1016/j.fss.2013.01.012 |
es_ES |
dc.description.references |
Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0 |
es_ES |
dc.description.references |
Gregori, V., & Miñana, J.-J. (2017). Strong convergence in fuzzy metric spaces. Filomat, 31(6), 1619-1625. doi:10.2298/fil1706619g |
es_ES |
dc.description.references |
Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4 |
es_ES |
dc.description.references |
George, A., & Veeramani, P. (1997). On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, 90(3), 365-368. doi:10.1016/s0165-0114(96)00207-2 |
es_ES |
dc.description.references |
Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006 |
es_ES |
dc.description.references |
Vasuki, R., & Veeramani, P. (2003). Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets and Systems, 135(3), 415-417. doi:10.1016/s0165-0114(02)00132-x |
es_ES |
dc.description.references |
Gregori, V., & Romaguera, S. (2004). Characterizing completable fuzzy metric spaces. Fuzzy Sets and Systems, 144(3), 411-420. doi:10.1016/s0165-0114(03)00161-1 |
es_ES |
dc.description.references |
Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008 |
es_ES |
dc.description.references |
Ricarte, L. A., & Romaguera, S. (2014). A domain-theoretic approach to fuzzy metric spaces. Topology and its Applications, 163, 149-159. doi:10.1016/j.topol.2013.10.014 |
es_ES |
dc.description.references |
Gregori, V., López-Crevillén, A., Morillas, S., & Sapena, A. (2009). On convergence in fuzzy metric spaces. Topology and its Applications, 156(18), 3002-3006. doi:10.1016/j.topol.2008.12.043 |
es_ES |
dc.description.references |
Sherwood, H. (1966). On the completion of probabilistic metric spaces. Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, 6(1), 62-64. doi:10.1007/bf00531809 |
es_ES |
dc.description.references |
Shukla, S., Gopal, D., & Sintunavarat, W. (2018). A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets and Systems, 350, 85-94. doi:10.1016/j.fss.2018.02.010 |
es_ES |
dc.description.references |
Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37 |
es_ES |
dc.description.references |
Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014 |
es_ES |
dc.description.references |
Rakić, D., Došenović, T., Mitrović, Z. D., de la Sen, M., & Radenović, S. (2020). Some Fixed Point Theorems of Ćirić Type in Fuzzy Metric Spaces. Mathematics, 8(2), 297. doi:10.3390/math8020297 |
es_ES |