- -

Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture

Mostrar el registro completo del ítem

Rogers, L.; Jones, BJP.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Adams, C.... (2020). Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture. Journal of Physics G Nuclear and Particle Physics. 47(7):1-17. https://doi.org/10.1088/1361-6471/ab8915

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172297

Ficheros en el ítem

Metadatos del ítem

Título: Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture
Autor: Rogers, L. Jones, B. J. P. Laing, A. Pingulkar, S. Smithers, B. Woodruff, K. Adams, C. Álvarez-Puerta, Vicente Arazi, L. Arnquist, I. J. Azevedo, C. D. R. Bailey, K. Ballester Merelo, Francisco José Benlloch-Rodríguez, J. M. Borges, F. I. G. M. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector ...[+]
Palabras clave: Gaseous detectors , Scintillators , Scintillation and light emission processes , Solid , Gas and liquid scintillators
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Physics G Nuclear and Particle Physics. (issn: 0954-3899 )
DOI: 10.1088/1361-6471/ab8915
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1361-6471/ab8915
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
...[+]
info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/
info:eu-repo/grantAgreement/DOE//DE-SC0019223/
info:eu-repo/grantAgreement/EC/H2020/674896/EU/The Elusives Enterprise: Asymmetries of the Invisible Universe/
info:eu-repo/grantAgreement/DOE//DE-SC0019054/
info:eu-repo/grantAgreement/EC/H2020/690575/EU/InvisiblesPlus/
info:eu-repo/grantAgreement/MINECO//MDM-2016-0692/
info:eu-repo/grantAgreement/EC/H2020/740055/EU/Molecule for low diffusion TPCs for rare event searches/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F120/
info:eu-repo/grantAgreement/FCT/3599-PPCDT/141151/PT/
info:eu-repo/grantAgreement/GVA//SEJI%2F2017%2F011/ES/Aprendizaje profundo en análisis de detectores en física/
info:eu-repo/grantAgreement/FCT/5876/147413/PT/Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics/
info:eu-repo/grantAgreement/MINECO//SEV-2014-0398/ES/INSTITUTO DE FISICA CORPUSCULAR (IFIC)/
info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F105921%2F2014/PT/R&D on the feasibility of Ba tagging in High Pressure Xenon Chambers/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-1-R/ES/CONSTRUCCION OPERACION E I+D+I PARA EL EXPERIMENTO NEXT EN EL LSC./
info:eu-repo/grantAgreement/FCT/POCI/48628/PT/Heterogeneous Agents, Learning and Complexity in Optimal Monetary Policy and Asset Pricing/
info:eu-repo/grantAgreement/MINECO//FIS2012-37947-C04-04/ES/ADQUISICION DE DATOS Y DISEÑO MECANICO PARA EL EXPERIMENTO NEXT/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F76842%2F2011/PT/PARTICIPATION IN THE INTERNATIONAL COLLABORATIONS "LAMB-SHIFT MEASUREMENTS IN MUONIC HYDROGEN, DEUTERIUM AND HELIUM" AND "NEUTRINO EXPERIMENT WITH A XENON TPC - NEXT"/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
info:eu-repo/grantAgreement/FCT/UID/UID%2FFIS%2F04559%2F2013/PT/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F109180%2F2015/PT/
[-]
Agradecimientos:
The work described was supported by the Department of Energy under Award numbers DE-SC0019054 and DE-SC0019223. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research ...[+]
Tipo: Artículo

References

Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222

Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104

Monrabal, F., Gómez-Cadenas, J. J., Toledo, J. F., Laing, A., Álvarez, V., Benlloch-Rodríguez, J. M., … Felkai, R. (2018). The NEXT White (NEW) detector. Journal of Instrumentation, 13(12), P12010-P12010. doi:10.1088/1748-0221/13/12/p12010 [+]
Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222

Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104

Monrabal, F., Gómez-Cadenas, J. J., Toledo, J. F., Laing, A., Álvarez, V., Benlloch-Rodríguez, J. M., … Felkai, R. (2018). The NEXT White (NEW) detector. Journal of Instrumentation, 13(12), P12010-P12010. doi:10.1088/1748-0221/13/12/p12010

Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159

Felkai, R., Monrabal, F., González-Díaz, D., Sorel, M., López-March, N., Gómez-Cadenas, J. J., … Azevedo, C. D. R. (2018). Helium–Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905, 82-90. doi:10.1016/j.nima.2018.07.013

McDonald, A. D., Woodruff, K., Atoum, B. A., González-Díaz, D., Jones, B. J. P., Adams, C., … Azevedo, C. D. . (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. Journal of Instrumentation, 14(08), P08009-P08009. doi:10.1088/1748-0221/14/08/p08009

Anton, G., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., … Cen, W. R. (2019). Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset. Physical Review Letters, 123(16). doi:10.1103/physrevlett.123.161802

Albert, J. B., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P., Beck, D., … Brown, E. (2018). Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay. Physical Review C, 97(6). doi:10.1103/physrevc.97.065503

Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). Publisher’s Note: Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen [Phys. Rev. Lett.117, 082503 (2016)]. Physical Review Letters, 117(10). doi:10.1103/physrevlett.117.109903

Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011

McDonald, A. D., Jones, B. J. P., Nygren, D. R., Adams, C., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.132504

Thapa, P., Arnquist, I., Byrnes, N., Denisenko, A. A., Foss, F. W., Jones, B. J. P., … Woodruff, K. (2019). Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Scientific Reports, 9(1). doi:10.1038/s41598-019-49283-x

Chadwick, M. B., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y., Kahler, A. C., … Arcilla, R. (2011). ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, 112(12), 2887-2996. doi:10.1016/j.nds.2011.11.002

Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman, M. W., … Dunn, M. (2018). ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nuclear Data Sheets, 148, 1-142. doi:10.1016/j.nds.2018.02.001

Martínez-Lema, G., Morata, J. A. H., Palmeiro, B., Botas, A., Ferrario, P., Monrabal, F., … Para, A. (2018). Calibration of the NEXT-White detector using 83mKr decays. Journal of Instrumentation, 13(10), P10014-P10014. doi:10.1088/1748-0221/13/10/p10014

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8

Albert, J. B., Daugherty, S. J., Johnson, T. N., O’Conner, T., Kaufman, L. J., Couture, A., … Krtička, M. (2016). Measurement of neutron capture onXe136. Physical Review C, 94(3). doi:10.1103/physrevc.94.034617

Batchelor, R., Aves, R., & Skyrme, T. H. R. (1955). Helium‐3 Filled Proportional Counter for Neutron Spectroscopy. Review of Scientific Instruments, 26(11), 1037-1047. doi:10.1063/1.1715182

Gibbons, J. H., & Macklin, R. L. (1959). Total Neutron Yields from Light Elements under Proton and Alpha Bombardment. Physical Review, 114(2), 571-580. doi:10.1103/physrev.114.571

Haesner, B., Heeringa, W., Klages, H. O., Dobiasch, H., Schmalz, G., Schwarz, P., … Käppeler, F. (1983). Measurement of theHe3andHe4total neutron cross sections up to 40 MeV. Physical Review C, 28(3), 995-999. doi:10.1103/physrevc.28.995

Antolković, B., Paić, G., Tomaš, P., & Rendić, D. (1967). Study of Neutron-Induced Reactions onHe3atEn=14.4MeV. Physical Review, 159(4), 777-781. doi:10.1103/physrev.159.777

Seagrave, J. D., Cranberg, L., & Simmons, J. E. (1960). Elastic Scattering of Fast Neutrons by Tritium andHe3. Physical Review, 119(6), 1981-1991. doi:10.1103/physrev.119.1981

Sayres, A. R., Jones, K. W., & Wu, C. S. (1961). Interaction of Neutrons withHe3. Physical Review, 122(6), 1853-1863. doi:10.1103/physrev.122.1853

Als-Nielsen, J., & Dietrich, O. (1964). Slow Neutron Cross Sections forHe3, B, and Au. Physical Review, 133(4B), B925-B929. doi:10.1103/physrev.133.b925

Bertini, H. W. (1963). Low-Energy Intranuclear Cascade Calculation. Physical Review, 131(4), 1801-1821. doi:10.1103/physrev.131.1801

Barashenkov, V. S., Bertini, H. W., Chen, K., Friedlander, G., Harp, G. D., Iljinov, A. S., … Toneev, V. D. (1972). Medium energy intranuclear cascade calculations: a comparative study. Nuclear Physics A, 187(3), 531-544. doi:10.1016/0375-9474(72)90678-1

BERTINI, H. W. (1969). Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment. Physical Review, 188(4), 1711-1730. doi:10.1103/physrev.188.1711

Wright, D. H., & Kelsey, M. H. (2015). The Geant4 Bertini Cascade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 804, 175-188. doi:10.1016/j.nima.2015.09.058

Kudryavtsev, V. A. (2009). Muon simulation codes MUSIC and MUSUN for underground physics. Computer Physics Communications, 180(3), 339-346. doi:10.1016/j.cpc.2008.10.013

Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., … Biller, S. D. (2009). Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D, 80(1). doi:10.1103/physrevd.80.012001

Wittenberg, L. J., Santarius, J. F., & Kulcinski, G. L. (1986). Lunar Source of3He for Commercial Fusion Power. Fusion Technology, 10(2), 167-178. doi:10.13182/fst86-a24972

Ahmad, Q. R., Allen, R. C., Andersen, T. C., D.Anglin, J., Barton, J. C., Beier, E. W., … Black, R. A. (2002). Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89(1). doi:10.1103/physrevlett.89.011301

Amsbaugh, J. F., Anaya, J. M., Banar, J., Bowles, T. J., Browne, M. C., Bullard, T. V., … Deng, H. (2007). An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579(3), 1054-1080. doi:10.1016/j.nima.2007.05.321

Tastevin, G. (2000). Optically Polarized Helium-3 for N.M.R. Imaging in Medicine. Physica Scripta, T86(1), 46. doi:10.1238/physica.topical.086a00046

Fain, S., Schiebler, M. L., McCormack, D. G., & Parraga, G. (2010). Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. Journal of Magnetic Resonance Imaging, 32(6), 1398-1408. doi:10.1002/jmri.22375

Korff, S. A., & Danforth, W. E. (1939). Neutron Measurements with Boron-Trifluoride Counters. Physical Review, 55(10), 980-980. doi:10.1103/physrev.55.980

Lintereur, A., Conlin, K., Ely, J., Erikson, L., Kouzes, R., Siciliano, E., … Woodring, M. (2011). 3He and BF3 neutron detector pressure effect and model comparison. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1), 347-350. doi:10.1016/j.nima.2010.10.040

Fowler, I. L., & Tunnicliffe, P. R. (1950). Boron Trifluoride Proportional Counters. Review of Scientific Instruments, 21(8), 734-740. doi:10.1063/1.1745700

Segrè, E., & Wiegand, C. (1947). Boron Trifluoride Neutron Detector for Low Neutron Intensities. Review of Scientific Instruments, 18(2), 86-89. doi:10.1063/1.1740909

Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049

Ferrari, A., Sala, P. R., Fasso, A., & Ranft, J. (2005). FLUKA: A Multi-Particle Transport Code. doi:10.2172/877507

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem