Mostrar el registro sencillo del ítem
dc.contributor.author | Juste Vidal, Belen Jeanine | es_ES |
dc.contributor.author | Miró Herrero, Rafael | es_ES |
dc.contributor.author | Morató-Rafet, Sergio | es_ES |
dc.contributor.author | Verdú Martín, Gumersindo Jesús | es_ES |
dc.contributor.author | Peris, S. | es_ES |
dc.date.accessioned | 2021-09-14T03:33:05Z | |
dc.date.available | 2021-09-14T03:33:05Z | |
dc.date.issued | 2020-09 | es_ES |
dc.identifier.issn | 0969-806X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172298 | |
dc.description.abstract | [EN] Radiation Therapy Planning Systems (RTPS) presently operating in hospitals comprise algorithms founded on deterministic simplifications that do not correctly take into account electron lateral transport in the regions where there are variations in density, and as a consequence, erroneous dose estimations could be generated. According to this, the possibility of using the Monte Carlo (MC) method in radiation planning systems is proposed in this work, since this technique could affect positively on the patient treatment. The proposed methodology provides 3D dose results that are more accurate and considers the inhomogeneities density variations. This paper presents a MC simulation of two different prostate cancer treatments using the latest version of MCNP, v.6.1.1; brachytherapy with I-125 seeds and radiolabeled Lu-177-PSMA. To that, a 3D model of the anatomy of a real anonymized patient is created from the segmentation of Computed Tomography (CT) images. Treatments over this 3D model is simulated and the dose given to the prostate and each surrounding organ is obtained for both treatments. Results have been verified with doses calculated by deterministic planning system used in hospital in the case of brachytherapy treatment, demonstrating the efficiency of MC method in the development of radiation cancer treatments, not only because of the results accuracy but also concerning the clinical affordable computing times | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Radiation Physics and Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Radiotherapy treatment planning | es_ES |
dc.subject | Prostate cancer treatment | es_ES |
dc.subject | MCNP6 | es_ES |
dc.subject | Monte Carlo | es_ES |
dc.subject | Brachytherapy | es_ES |
dc.subject | 125I seeds | es_ES |
dc.subject | 177Lu-PSMA | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.radphyschem.2020.108908 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Juste Vidal, BJ.; Miró Herrero, R.; Morató-Rafet, S.; Verdú Martín, GJ.; Peris, S. (2020). Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments. Radiation Physics and Chemistry. 174(108908):1-6. https://doi.org/10.1016/j.radphyschem.2020.108908 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.radphyschem.2020.108908 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 174 | es_ES |
dc.description.issue | 108908 | es_ES |
dc.relation.pasarela | S\415349 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.description.references | ancer society. Last Access date: 20 July 2019. Available: https://www.cancer.org/es/. | es_ES |
dc.description.references | Baum, R. P., Kulkarni, H. R., Schuchardt, C., Singh, A., Wirtz, M., Wiessalla, S., … Wester, H.-J. (2016). 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. Journal of Nuclear Medicine, 57(7), 1006-1013. doi:10.2967/jnumed.115.168443 | es_ES |
dc.description.references | Delker, A., Fendler, W. P., Kratochwil, C., Brunegraf, A., Gosewisch, A., Gildehaus, F. J., … Böning, G. (2015). Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 43(1), 42-51. doi:10.1007/s00259-015-3174-7 | es_ES |
dc.description.references | Emmett, L., Willowson, K., Violet, J., Shin, J., Blanksby, A., & Lee, J. (2017). Lutetium177PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. Journal of Medical Radiation Sciences, 64(1), 52-60. doi:10.1002/jmrs.227 | es_ES |
dc.description.references | Fendler, W. P., Rahbar, K., Herrmann, K., Kratochwil, C., & Eiber, M. (2017). 177Lu-PSMA Radioligand Therapy for Prostate Cancer. Journal of Nuclear Medicine, 58(8), 1196-1200. doi:10.2967/jnumed.117.191023 | es_ES |
dc.description.references | Grimm, P., Billiet, I., Bostwick, D., Dicker, A. P., Frank, S., Immerzeel, J., … Langley, S. (2012). Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU International, 109, 22-29. doi:10.1111/j.1464-410x.2011.10827.x | es_ES |
dc.description.references | Karaiskos, P., Papagiannis, P., Sakelliou, L., Anagnostopoulos, G., & Baltas, D. (2001). Monte Carlo dosimetry of the selectSeed 125I interstitial brachytherapy seed. Medical Physics, 28(8), 1753-1760. doi:10.1118/1.1384460 | es_ES |
dc.description.references | Monte Carlo team, “MCNP6TM – User's Manual, Version 6.1.1beta”, Los Álamos National Laboratory, LA-CP-14-00745, Rev. 0, June 2014. Materialise. Mimics Medical 17.0 Reference Guide. | es_ES |
dc.description.references | Rahbar, K., Afshar-Oromieh, A., Jadvar, H., & Ahmadzadehfar, H. (2018). PSMA Theranostics: Current Status and Future Directions. Molecular Imaging, 17, 153601211877606. doi:10.1177/1536012118776068 | es_ES |
dc.description.references | Scarpa, L., Buxbaum, S., Kendler, D., Fink, K., Bektic, J., Gruber, L., … Virgolini, I. (2017). The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. European Journal of Nuclear Medicine and Molecular Imaging, 44(5), 788-800. doi:10.1007/s00259-016-3609-9 | es_ES |
dc.description.references | Skowronek, J. (2017). Current status of brachytherapy in cancer treatment – short overview. Journal of Contemporary Brachytherapy, 9(6), 581-589. doi:10.5114/jcb.2017.72607 | es_ES |
dc.description.references | Stock, R. G., Stone, N. N., Cesaretti, J. A., & Rosenstein, B. S. (2006). Biologically effective dose values for prostate brachytherapy: Effects on PSA failure and posttreatment biopsy results. International Journal of Radiation Oncology*Biology*Physics, 64(2), 527-533. doi:10.1016/j.ijrobp.2005.07.981 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |