- -

Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juste Vidal, Belen Jeanine es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Morató-Rafet, Sergio es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.contributor.author Peris, S. es_ES
dc.date.accessioned 2021-09-14T03:33:05Z
dc.date.available 2021-09-14T03:33:05Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0969-806X es_ES
dc.identifier.uri http://hdl.handle.net/10251/172298
dc.description.abstract [EN] Radiation Therapy Planning Systems (RTPS) presently operating in hospitals comprise algorithms founded on deterministic simplifications that do not correctly take into account electron lateral transport in the regions where there are variations in density, and as a consequence, erroneous dose estimations could be generated. According to this, the possibility of using the Monte Carlo (MC) method in radiation planning systems is proposed in this work, since this technique could affect positively on the patient treatment. The proposed methodology provides 3D dose results that are more accurate and considers the inhomogeneities density variations. This paper presents a MC simulation of two different prostate cancer treatments using the latest version of MCNP, v.6.1.1; brachytherapy with I-125 seeds and radiolabeled Lu-177-PSMA. To that, a 3D model of the anatomy of a real anonymized patient is created from the segmentation of Computed Tomography (CT) images. Treatments over this 3D model is simulated and the dose given to the prostate and each surrounding organ is obtained for both treatments. Results have been verified with doses calculated by deterministic planning system used in hospital in the case of brachytherapy treatment, demonstrating the efficiency of MC method in the development of radiation cancer treatments, not only because of the results accuracy but also concerning the clinical affordable computing times es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Radiation Physics and Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Radiotherapy treatment planning es_ES
dc.subject Prostate cancer treatment es_ES
dc.subject MCNP6 es_ES
dc.subject Monte Carlo es_ES
dc.subject Brachytherapy es_ES
dc.subject 125I seeds es_ES
dc.subject 177Lu-PSMA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.radphyschem.2020.108908 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F035/ES/BIOINGENIERIA DE LAS RADIACIONES IONIZANTES. BIORA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Juste Vidal, BJ.; Miró Herrero, R.; Morató-Rafet, S.; Verdú Martín, GJ.; Peris, S. (2020). Prostate cancer Monte Carlo dose model with (177)Lutetium and (125)Iodine treatments. Radiation Physics and Chemistry. 174(108908):1-6. https://doi.org/10.1016/j.radphyschem.2020.108908 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.radphyschem.2020.108908 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 174 es_ES
dc.description.issue 108908 es_ES
dc.relation.pasarela S\415349 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.description.references ancer society. Last Access date: 20 July 2019. Available: https://www.cancer.org/es/. es_ES
dc.description.references Baum, R. P., Kulkarni, H. R., Schuchardt, C., Singh, A., Wirtz, M., Wiessalla, S., … Wester, H.-J. (2016). 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. Journal of Nuclear Medicine, 57(7), 1006-1013. doi:10.2967/jnumed.115.168443 es_ES
dc.description.references Delker, A., Fendler, W. P., Kratochwil, C., Brunegraf, A., Gosewisch, A., Gildehaus, F. J., … Böning, G. (2015). Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 43(1), 42-51. doi:10.1007/s00259-015-3174-7 es_ES
dc.description.references Emmett, L., Willowson, K., Violet, J., Shin, J., Blanksby, A., & Lee, J. (2017). Lutetium177PSMA radionuclide therapy for men with prostate cancer: a review of the current literature and discussion of practical aspects of therapy. Journal of Medical Radiation Sciences, 64(1), 52-60. doi:10.1002/jmrs.227 es_ES
dc.description.references Fendler, W. P., Rahbar, K., Herrmann, K., Kratochwil, C., & Eiber, M. (2017). 177Lu-PSMA Radioligand Therapy for Prostate Cancer. Journal of Nuclear Medicine, 58(8), 1196-1200. doi:10.2967/jnumed.117.191023 es_ES
dc.description.references Grimm, P., Billiet, I., Bostwick, D., Dicker, A. P., Frank, S., Immerzeel, J., … Langley, S. (2012). Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU International, 109, 22-29. doi:10.1111/j.1464-410x.2011.10827.x es_ES
dc.description.references Karaiskos, P., Papagiannis, P., Sakelliou, L., Anagnostopoulos, G., & Baltas, D. (2001). Monte Carlo dosimetry of the selectSeed 125I interstitial brachytherapy seed. Medical Physics, 28(8), 1753-1760. doi:10.1118/1.1384460 es_ES
dc.description.references Monte Carlo team, “MCNP6TM – User's Manual, Version 6.1.1beta”, Los Álamos National Laboratory, LA-CP-14-00745, Rev. 0, June 2014. Materialise. Mimics Medical 17.0 Reference Guide. es_ES
dc.description.references Rahbar, K., Afshar-Oromieh, A., Jadvar, H., & Ahmadzadehfar, H. (2018). PSMA Theranostics: Current Status and Future Directions. Molecular Imaging, 17, 153601211877606. doi:10.1177/1536012118776068 es_ES
dc.description.references Scarpa, L., Buxbaum, S., Kendler, D., Fink, K., Bektic, J., Gruber, L., … Virgolini, I. (2017). The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates. European Journal of Nuclear Medicine and Molecular Imaging, 44(5), 788-800. doi:10.1007/s00259-016-3609-9 es_ES
dc.description.references Skowronek, J. (2017). Current status of brachytherapy in cancer treatment – short overview. Journal of Contemporary Brachytherapy, 9(6), 581-589. doi:10.5114/jcb.2017.72607 es_ES
dc.description.references Stock, R. G., Stone, N. N., Cesaretti, J. A., & Rosenstein, B. S. (2006). Biologically effective dose values for prostate brachytherapy: Effects on PSA failure and posttreatment biopsy results. International Journal of Radiation Oncology*Biology*Physics, 64(2), 527-533. doi:10.1016/j.ijrobp.2005.07.981 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem