- -

Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santana Barros, Kayo es_ES
dc.contributor.author Scarazzato, Tatiana es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.contributor.author Espinosa, Denise Crocce Romano es_ES
dc.date.accessioned 2021-09-14T03:33:11Z
dc.date.available 2021-09-14T03:33:11Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172301
dc.description.abstract [EN] Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion-exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection. es_ES
dc.description.sponsorship This research was funded by CNPq (Process 141346/2016-7 and 171241/2017-7), FAPESP (Process 2012/51871-9) and CAPES (Processes 88881.190502/2018-01 and 88887.362657/2019-00). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrodialysis es_ES
dc.subject Chronopotentiometry es_ES
dc.subject Ion-exchange membrane es_ES
dc.subject Overlimiting current es_ES
dc.subject Water dissociation es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes10040069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//171241%2F2017-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2012%2F51871-9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//88887.362657%2F2019-00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Santana Barros, K.; Scarazzato, T.; Pérez-Herranz, V.; Espinosa, DCR. (2020). Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations. Membranes. 10(4):1-21. https://doi.org/10.3390/membranes10040069 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes10040069 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 32290497 es_ES
dc.identifier.pmcid PMC7231372 es_ES
dc.relation.pasarela S\413603 es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440 es_ES
dc.description.references Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003 es_ES
dc.description.references Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020 es_ES
dc.description.references Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4 es_ES
dc.description.references Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079 es_ES
dc.description.references De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050 es_ES
dc.description.references Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e es_ES
dc.description.references Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j es_ES
dc.description.references Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x es_ES
dc.description.references De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013 es_ES
dc.description.references De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140 es_ES
dc.description.references Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053 es_ES
dc.description.references Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004 es_ES
dc.description.references Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005 es_ES
dc.description.references De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012 es_ES
dc.description.references Cherif, A. T., Elmidaoui, A., & Gavach, C. (1993). Separation of Ag+, Zn2+ and Cu2+ ions by electrodialysis with monovalent cation specific membrane and EDTA. Journal of Membrane Science, 76(1), 39-49. doi:10.1016/0376-7388(93)87003-t es_ES
dc.description.references Iizuka, A., Yamashita, Y., Nagasawa, H., Yamasaki, A., & Yanagisawa, Y. (2013). Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation. Separation and Purification Technology, 113, 33-41. doi:10.1016/j.seppur.2013.04.014 es_ES
dc.description.references Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013 es_ES
dc.description.references Benvenuti, T., Siqueira Rodrigues, M. A., Bernardes, A. M., & Zoppas-Ferreira, J. (2017). Closing the loop in the electroplating industry by electrodialysis. Journal of Cleaner Production, 155, 130-138. doi:10.1016/j.jclepro.2016.05.139 es_ES
dc.description.references Marder, L., Bernardes, A. M., & Zoppas Ferreira, J. (2004). Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37(3), 247-255. doi:10.1016/j.seppur.2003.10.011 es_ES
dc.description.references Bittencourt, S. D., Marder, L., Benvenuti, T., Ferreira, J. Z., & Bernardes, A. M. (2017). Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Separation Science and Technology, 52(13), 2079-2089. doi:10.1080/01496395.2017.1310896 es_ES
dc.description.references Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D., Nikonenko, V. V., Larchet, C., & Pourcelly, G. (2006). Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. The Journal of Physical Chemistry B, 110(27), 13458-13469. doi:10.1021/jp062433f es_ES
dc.description.references Pismenskaya, N. D., Nikonenko, V. V., Zabolotsky, V. I., Sandoux, R., Pourcelly, G., & Tskhay, A. A. (2008). Effects of the desalination chamber design on the mass-transfer characteristics of electrodialysis apparatuses at overlimiting current densities. Russian Journal of Electrochemistry, 44(7), 818-827. doi:10.1134/s1023193508070082 es_ES
dc.description.references Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008 es_ES
dc.description.references Kniaginicheva, E., Pismenskaya, N., Melnikov, S., Belashova, E., Sistat, P., Cretin, M., & Nikonenko, V. (2015). Water splitting at an anion-exchange membrane as studied by impedance spectroscopy. Journal of Membrane Science, 496, 78-83. doi:10.1016/j.memsci.2015.07.050 es_ES
dc.description.references Lemay, N., Mikhaylin, S., & Bazinet, L. (2019). Voltage spike and electroconvective vortices generation during electrodialysis under pulsed electric field: Impact on demineralization process efficiency and energy consumption. Innovative Food Science & Emerging Technologies, 52, 221-231. doi:10.1016/j.ifset.2018.12.004 es_ES
dc.description.references Lemay, N., Mikhaylin, S., Mareev, S., Pismenskaya, N., Nikonenko, V., & Bazinet, L. (2020). How demineralization duration by electrodialysis under high frequency pulsed electric field can be the same as in continuous current condition and that for better performances? Journal of Membrane Science, 603, 117878. doi:10.1016/j.memsci.2020.117878 es_ES
dc.description.references Dufton, G., Mikhaylin, S., Gaaloul, S., & Bazinet, L. (2020). Systematic Study of the Impact of Pulsed Electric Field Parameters (Pulse/Pause Duration and Frequency) on ED Performances during Acid Whey Treatment. Membranes, 10(1), 14. doi:10.3390/membranes10010014 es_ES
dc.description.references Sosa-Fernandez, P. A., Post, J. W., Ramdlan, M. S., Leermakers, F. A. M., Bruning, H., & Rijnaarts, H. H. M. (2020). Improving the performance of polymer-flooding produced water electrodialysis through the application of pulsed electric field. Desalination, 484, 114424. doi:10.1016/j.desal.2020.114424 es_ES
dc.description.references Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067 es_ES
dc.description.references Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014). Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology, 129, 106-112. doi:10.1016/j.seppur.2014.04.002 es_ES
dc.description.references Scarazzato, T., Panossian, Z., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2018). Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination, 436, 114-124. doi:10.1016/j.desal.2018.01.005 es_ES
dc.description.references Buzzi, D. C., Viegas, L. S., Rodrigues, M. A. S., Bernardes, A. M., & Tenório, J. A. S. (2013). Water recovery from acid mine drainage by electrodialysis. Minerals Engineering, 40, 82-89. doi:10.1016/j.mineng.2012.08.005 es_ES
dc.description.references Scarazzato, T., Panossian, Z., García-Gabaldón, M., Ortega, E. M., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048 es_ES
dc.description.references Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 es_ES
dc.description.references Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7 es_ES
dc.description.references Zabolotsky, V. I., Nikonenko, V. V., Pismenskaya, N. D., Laktionov, E. V., Urtenov, M. K., Strathmann, H., … Koops, G. H. (1998). Coupled transport phenomena in overlimiting current electrodialysis. Separation and Purification Technology, 14(1-3), 255-267. doi:10.1016/s1383-5866(98)00080-x es_ES
dc.description.references Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentâ voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7 es_ES
dc.description.references Belloň, T., Polezhaev, P., Vobecká, L., Svoboda, M., & Slouka, Z. (2019). Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. Journal of Membrane Science, 572, 607-618. doi:10.1016/j.memsci.2018.11.037 es_ES
dc.description.references Cifuentes-Araya, N., Astudillo-Castro, C., & Bazinet, L. (2014). Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: Evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate. Journal of Colloid and Interface Science, 426, 221-234. doi:10.1016/j.jcis.2014.03.054 es_ES
dc.description.references Bukhovets, A., Eliseeva, T., Dalthrope, N., & Oren, Y. (2011). The influence of current density on the electrochemical properties of anion-exchange membranes in electrodialysis of phenylalanine solution. Electrochimica Acta, 56(27), 10283-10287. doi:10.1016/j.electacta.2011.09.025 es_ES
dc.description.references Mikhaylin, S., Nikonenko, V., Pismenskaya, N., Pourcelly, G., Choi, S., Kwon, H. J., … Bazinet, L. (2016). How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Desalination, 393, 102-114. doi:10.1016/j.desal.2015.09.011 es_ES
dc.description.references Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl2 and MgCl2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195 es_ES
dc.description.references Korzhova, E., Pismenskaya, N., Lopatin, D., Baranov, O., Dammak, L., & Nikonenko, V. (2016). Effect of surface hydrophobization on chronopotentiometric behavior of an AMX anion-exchange membrane at overlimiting currents. Journal of Membrane Science, 500, 161-170. doi:10.1016/j.memsci.2015.11.018 es_ES
dc.description.references Choi, J. (2001). Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. Journal of Membrane Science, 191(1-2), 225-236. doi:10.1016/s0376-7388(01)00513-0 es_ES
dc.description.references Mareev, S. A., Butylskii, D. Y., Pismenskaya, N. D., & Nikonenko, V. V. (2016). Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modeling and experiment. Journal of Membrane Science, 500, 171-179. doi:10.1016/j.memsci.2015.11.026 es_ES
dc.description.references Rubinstein, I., Zaltzman, B., & Pundik, T. (2002). Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes. Physical Review E, 65(4). doi:10.1103/physreve.65.041507 es_ES
dc.description.references Andreeva, M. A., Gil, V. V., Pismenskaya, N. D., Nikonenko, V. V., Dammak, L., Larchet, C., … Kononenko, N. A. (2017). Effect of homogenization and hydrophobization of a cation-exchange membrane surface on its scaling in the presence of calcium and magnesium chlorides during electrodialysis. Journal of Membrane Science, 540, 183-191. doi:10.1016/j.memsci.2017.06.030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem