Mostrar el registro sencillo del ítem
dc.contributor.author | Santana Barros, Kayo | es_ES |
dc.contributor.author | Scarazzato, Tatiana | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.contributor.author | Espinosa, Denise Crocce Romano | es_ES |
dc.date.accessioned | 2021-09-14T03:33:11Z | |
dc.date.available | 2021-09-14T03:33:11Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172301 | |
dc.description.abstract | [EN] Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide-free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion-exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection. | es_ES |
dc.description.sponsorship | This research was funded by CNPq (Process 141346/2016-7 and 171241/2017-7), FAPESP (Process 2012/51871-9) and CAPES (Processes 88881.190502/2018-01 and 88887.362657/2019-00). This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES)-Finance Code 001. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Membranes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electrodialysis | es_ES |
dc.subject | Chronopotentiometry | es_ES |
dc.subject | Ion-exchange membrane | es_ES |
dc.subject | Overlimiting current | es_ES |
dc.subject | Water dissociation | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/membranes10040069 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//171241%2F2017-7/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2012%2F51871-9/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//88887.362657%2F2019-00/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//141346%2F2016-7/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//88881.190502%2F2018-01/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Santana Barros, K.; Scarazzato, T.; Pérez-Herranz, V.; Espinosa, DCR. (2020). Treatment of Cyanide-Free Wastewater from Brass Electrodeposition with EDTA by Electrodialysis: Evaluation of Underlimiting and Overlimiting Operations. Membranes. 10(4):1-21. https://doi.org/10.3390/membranes10040069 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/membranes10040069 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2077-0375 | es_ES |
dc.identifier.pmid | 32290497 | es_ES |
dc.identifier.pmcid | PMC7231372 | es_ES |
dc.relation.pasarela | S\413603 | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Rashwan, S. M. (2007). Electrodeposition of Zn–Cu coatings from alkaline sulphate bath containing glycine. Transactions of the IMF, 85(4), 217-224. doi:10.1179/174591907x216440 | es_ES |
dc.description.references | Ramírez, C., & Calderón, J. A. (2016). Study of the effect of Triethanolamine as a chelating agent in the simultaneous electrodeposition of copper and zinc from non-cyanide electrolytes. Journal of Electroanalytical Chemistry, 765, 132-139. doi:10.1016/j.jelechem.2015.06.003 | es_ES |
dc.description.references | Ballesteros, J. C., Torres-Martínez, L. M., Juárez-Ramírez, I., Trejo, G., & Meas, Y. (2014). Study of the electrochemical co-reduction of Cu2+ and Zn2+ ions from an alkaline non-cyanide solution containing glycine. Journal of Electroanalytical Chemistry, 727, 104-112. doi:10.1016/j.jelechem.2014.04.020 | es_ES |
dc.description.references | Vagramyan, T., Leach, J. S. L., & Moon, J. R. (1979). On the problems of electrodepositing brass from non-cyanide electrolytes. Electrochimica Acta, 24(2), 231-236. doi:10.1016/0013-4686(79)80030-4 | es_ES |
dc.description.references | Carlos, I. ., & de Almeida, M. R. H. (2004). Study of the influence of the polyalcohol sorbitol on the electrodeposition of copper–zinc films from a non-cyanide bath. Journal of Electroanalytical Chemistry, 562(2), 153-159. doi:10.1016/j.jelechem.2003.08.028 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Tulio, P. C., & Carlos, I. A. (2015). Copper–zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization. Applied Surface Science, 333, 13-22. doi:10.1016/j.apsusc.2015.02.005 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., de Brito, M. M., Tulio, P. C., & Carlos, I. A. (2016). Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent. Surface and Coatings Technology, 287, 103-112. doi:10.1016/j.surfcoat.2015.12.079 | es_ES |
dc.description.references | De Almeida, M. R. H., Barbano, E. P., de Carvalho, M. F., Carlos, I. A., Siqueira, J. L. P., & Barbosa, L. L. (2011). Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surface and Coatings Technology, 206(1), 95-102. doi:10.1016/j.surfcoat.2011.06.050 | es_ES |
dc.description.references | Senna, L. F., Díaz, S. L., & Sathler, L. (2003). Electrodeposition of copper–zinc alloys in pyrophosphate-based electrolytes. Journal of Applied Electrochemistry, 33(12), 1155-1161. doi:10.1023/b:jach.0000003756.11862.6e | es_ES |
dc.description.references | Despić, A. R., Marinović, V., & Jović, V. D. (1992). Kinetics of deposition and dissolution of brass from the pyrophosphate—oxalate bath. Journal of Electroanalytical Chemistry, 339(1-2), 473-488. doi:10.1016/0022-0728(92)80468-j | es_ES |
dc.description.references | Fujiwara, Y., & Enomoto, H. (1988). Characterization of Cu-Zn alloy deposits from glucoheptonate baths. Surface and Coatings Technology, 35(1-2), 113-124. doi:10.1016/0257-8972(88)90062-x | es_ES |
dc.description.references | De Filippo, D., Rossi, A., & Atzei, D. (1992). A tartrate-based alloy bath for brass-plated steel wire production. Journal of Applied Electrochemistry, 22(1), 64-72. doi:10.1007/bf01093013 | es_ES |
dc.description.references | De Vreese, P., Skoczylas, A., Matthijs, E., Fransaer, J., & Binnemans, K. (2013). Electrodeposition of copper–zinc alloys from an ionic liquid-like choline acetate electrolyte. Electrochimica Acta, 108, 788-794. doi:10.1016/j.electacta.2013.06.140 | es_ES |
dc.description.references | Rousse, C., Beaufils, S., & Fricoteaux, P. (2013). Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochimica Acta, 107, 624-631. doi:10.1016/j.electacta.2013.06.053 | es_ES |
dc.description.references | Juškėnas, R., Karpavičienė, V., Pakštas, V., Selskis, A., & Kapočius, V. (2007). Electrochemical and XRD studies of Cu–Zn coatings electrodeposited in solution with d-mannitol. Journal of Electroanalytical Chemistry, 602(2), 237-244. doi:10.1016/j.jelechem.2007.01.004 | es_ES |
dc.description.references | Barbano, E. P., de Oliveira, G. M., de Carvalho, M. F., & Carlos, I. A. (2014). Copper–tin electrodeposition from an acid solution containing EDTA added. Surface and Coatings Technology, 240, 14-22. doi:10.1016/j.surfcoat.2013.12.005 | es_ES |
dc.description.references | De Oliveira, G. M., & Carlos, I. A. (2009). Silver–zinc electrodeposition from a thiourea solution with added EDTA or HEDTA. Electrochimica Acta, 54(8), 2155-2163. doi:10.1016/j.electacta.2008.10.012 | es_ES |
dc.description.references | Cherif, A. T., Elmidaoui, A., & Gavach, C. (1993). Separation of Ag+, Zn2+ and Cu2+ ions by electrodialysis with monovalent cation specific membrane and EDTA. Journal of Membrane Science, 76(1), 39-49. doi:10.1016/0376-7388(93)87003-t | es_ES |
dc.description.references | Iizuka, A., Yamashita, Y., Nagasawa, H., Yamasaki, A., & Yanagisawa, Y. (2013). Separation of lithium and cobalt from waste lithium-ion batteries via bipolar membrane electrodialysis coupled with chelation. Separation and Purification Technology, 113, 33-41. doi:10.1016/j.seppur.2013.04.014 | es_ES |
dc.description.references | Barros, K. S., & Espinosa, D. C. R. (2018). Chronopotentiometry of an anion-exchange membrane for treating a synthesized free-cyanide effluent from brass electrodeposition with EDTA as chelating agent. Separation and Purification Technology, 201, 244-255. doi:10.1016/j.seppur.2018.03.013 | es_ES |
dc.description.references | Benvenuti, T., Siqueira Rodrigues, M. A., Bernardes, A. M., & Zoppas-Ferreira, J. (2017). Closing the loop in the electroplating industry by electrodialysis. Journal of Cleaner Production, 155, 130-138. doi:10.1016/j.jclepro.2016.05.139 | es_ES |
dc.description.references | Marder, L., Bernardes, A. M., & Zoppas Ferreira, J. (2004). Cadmium electroplating wastewater treatment using a laboratory-scale electrodialysis system. Separation and Purification Technology, 37(3), 247-255. doi:10.1016/j.seppur.2003.10.011 | es_ES |
dc.description.references | Bittencourt, S. D., Marder, L., Benvenuti, T., Ferreira, J. Z., & Bernardes, A. M. (2017). Analysis of different current density conditions in the electrodialysis of zinc electroplating process solution. Separation Science and Technology, 52(13), 2079-2089. doi:10.1080/01496395.2017.1310896 | es_ES |
dc.description.references | Belova, E. I., Lopatkova, G. Y., Pismenskaya, N. D., Nikonenko, V. V., Larchet, C., & Pourcelly, G. (2006). Effect of Anion-exchange Membrane Surface Properties on Mechanisms of Overlimiting Mass Transfer. The Journal of Physical Chemistry B, 110(27), 13458-13469. doi:10.1021/jp062433f | es_ES |
dc.description.references | Pismenskaya, N. D., Nikonenko, V. V., Zabolotsky, V. I., Sandoux, R., Pourcelly, G., & Tskhay, A. A. (2008). Effects of the desalination chamber design on the mass-transfer characteristics of electrodialysis apparatuses at overlimiting current densities. Russian Journal of Electrochemistry, 44(7), 818-827. doi:10.1134/s1023193508070082 | es_ES |
dc.description.references | Nikonenko, V. V., Kovalenko, A. V., Urtenov, M. K., Pismenskaya, N. D., Han, J., Sistat, P., & Pourcelly, G. (2014). Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination, 342, 85-106. doi:10.1016/j.desal.2014.01.008 | es_ES |
dc.description.references | Kniaginicheva, E., Pismenskaya, N., Melnikov, S., Belashova, E., Sistat, P., Cretin, M., & Nikonenko, V. (2015). Water splitting at an anion-exchange membrane as studied by impedance spectroscopy. Journal of Membrane Science, 496, 78-83. doi:10.1016/j.memsci.2015.07.050 | es_ES |
dc.description.references | Lemay, N., Mikhaylin, S., & Bazinet, L. (2019). Voltage spike and electroconvective vortices generation during electrodialysis under pulsed electric field: Impact on demineralization process efficiency and energy consumption. Innovative Food Science & Emerging Technologies, 52, 221-231. doi:10.1016/j.ifset.2018.12.004 | es_ES |
dc.description.references | Lemay, N., Mikhaylin, S., Mareev, S., Pismenskaya, N., Nikonenko, V., & Bazinet, L. (2020). How demineralization duration by electrodialysis under high frequency pulsed electric field can be the same as in continuous current condition and that for better performances? Journal of Membrane Science, 603, 117878. doi:10.1016/j.memsci.2020.117878 | es_ES |
dc.description.references | Dufton, G., Mikhaylin, S., Gaaloul, S., & Bazinet, L. (2020). Systematic Study of the Impact of Pulsed Electric Field Parameters (Pulse/Pause Duration and Frequency) on ED Performances during Acid Whey Treatment. Membranes, 10(1), 14. doi:10.3390/membranes10010014 | es_ES |
dc.description.references | Sosa-Fernandez, P. A., Post, J. W., Ramdlan, M. S., Leermakers, F. A. M., Bruning, H., & Rijnaarts, H. H. M. (2020). Improving the performance of polymer-flooding produced water electrodialysis through the application of pulsed electric field. Desalination, 484, 114424. doi:10.1016/j.desal.2020.114424 | es_ES |
dc.description.references | Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2018). Evaluation of the effect of the solution concentration and membrane morphology on the transport properties of Cu(II) through two monopolar cation–exchange membranes. Separation and Purification Technology, 193, 184-192. doi:10.1016/j.seppur.2017.10.067 | es_ES |
dc.description.references | Benvenuti, T., Krapf, R. S., Rodrigues, M. A. S., Bernardes, A. M., & Zoppas-Ferreira, J. (2014). Recovery of nickel and water from nickel electroplating wastewater by electrodialysis. Separation and Purification Technology, 129, 106-112. doi:10.1016/j.seppur.2014.04.002 | es_ES |
dc.description.references | Scarazzato, T., Panossian, Z., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2018). Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination, 436, 114-124. doi:10.1016/j.desal.2018.01.005 | es_ES |
dc.description.references | Buzzi, D. C., Viegas, L. S., Rodrigues, M. A. S., Bernardes, A. M., & Tenório, J. A. S. (2013). Water recovery from acid mine drainage by electrodialysis. Minerals Engineering, 40, 82-89. doi:10.1016/j.mineng.2012.08.005 | es_ES |
dc.description.references | Scarazzato, T., Panossian, Z., García-Gabaldón, M., Ortega, E. M., Tenório, J. A. S., Pérez-Herranz, V., & Espinosa, D. C. R. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science, 535, 268-278. doi:10.1016/j.memsci.2017.04.048 | es_ES |
dc.description.references | Melnikova, E. D., Pismenskaya, N. D., Bazinet, L., Mikhaylin, S., & Nikonenko, V. V. (2018). Effect of ampholyte nature on current-voltage characteristic of anion-exchange membrane. Electrochimica Acta, 285, 185-191. doi:10.1016/j.electacta.2018.07.186 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., & Pérez-Herranz, V. (2013). Effect of the equilibria of multivalent metal sulfates on the transport through cation-exchange membranes at different current regimes. Journal of Membrane Science, 443, 181-192. doi:10.1016/j.memsci.2013.04.058 | es_ES |
dc.description.references | Pismenskaya, N., Nikonenko, V., Auclair, B., & Pourcelly, G. (2001). Transport of weak-electrolyte anions through anion exchange membranes. Journal of Membrane Science, 189(1), 129-140. doi:10.1016/s0376-7388(01)00405-7 | es_ES |
dc.description.references | Zabolotsky, V. I., Nikonenko, V. V., Pismenskaya, N. D., Laktionov, E. V., Urtenov, M. K., Strathmann, H., … Koops, G. H. (1998). Coupled transport phenomena in overlimiting current electrodialysis. Separation and Purification Technology, 14(1-3), 255-267. doi:10.1016/s1383-5866(98)00080-x | es_ES |
dc.description.references | Krol, J. (1999). Concentration polarization with monopolar ion exchange membranes: currentâ voltage curves and water dissociation. Journal of Membrane Science, 162(1-2), 145-154. doi:10.1016/s0376-7388(99)00133-7 | es_ES |
dc.description.references | Belloň, T., Polezhaev, P., Vobecká, L., Svoboda, M., & Slouka, Z. (2019). Experimental observation of phenomena developing on ion-exchange systems during current-voltage curve measurement. Journal of Membrane Science, 572, 607-618. doi:10.1016/j.memsci.2018.11.037 | es_ES |
dc.description.references | Cifuentes-Araya, N., Astudillo-Castro, C., & Bazinet, L. (2014). Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: Evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate. Journal of Colloid and Interface Science, 426, 221-234. doi:10.1016/j.jcis.2014.03.054 | es_ES |
dc.description.references | Bukhovets, A., Eliseeva, T., Dalthrope, N., & Oren, Y. (2011). The influence of current density on the electrochemical properties of anion-exchange membranes in electrodialysis of phenylalanine solution. Electrochimica Acta, 56(27), 10283-10287. doi:10.1016/j.electacta.2011.09.025 | es_ES |
dc.description.references | Mikhaylin, S., Nikonenko, V., Pismenskaya, N., Pourcelly, G., Choi, S., Kwon, H. J., … Bazinet, L. (2016). How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Desalination, 393, 102-114. doi:10.1016/j.desal.2015.09.011 | es_ES |
dc.description.references | Gil, V. V., Andreeva, M. A., Jansezian, L., Han, J., Pismenskaya, N. D., Nikonenko, V. V., … Dammak, L. (2018). Impact of heterogeneous cation-exchange membrane surface modification on chronopotentiometric and current–voltage characteristics in NaCl, CaCl2 and MgCl2 solutions. Electrochimica Acta, 281, 472-485. doi:10.1016/j.electacta.2018.05.195 | es_ES |
dc.description.references | Korzhova, E., Pismenskaya, N., Lopatin, D., Baranov, O., Dammak, L., & Nikonenko, V. (2016). Effect of surface hydrophobization on chronopotentiometric behavior of an AMX anion-exchange membrane at overlimiting currents. Journal of Membrane Science, 500, 161-170. doi:10.1016/j.memsci.2015.11.018 | es_ES |
dc.description.references | Choi, J. (2001). Pore size characterization of cation-exchange membranes by chronopotentiometry using homologous amine ions. Journal of Membrane Science, 191(1-2), 225-236. doi:10.1016/s0376-7388(01)00513-0 | es_ES |
dc.description.references | Mareev, S. A., Butylskii, D. Y., Pismenskaya, N. D., & Nikonenko, V. V. (2016). Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modeling and experiment. Journal of Membrane Science, 500, 171-179. doi:10.1016/j.memsci.2015.11.026 | es_ES |
dc.description.references | Rubinstein, I., Zaltzman, B., & Pundik, T. (2002). Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes. Physical Review E, 65(4). doi:10.1103/physreve.65.041507 | es_ES |
dc.description.references | Andreeva, M. A., Gil, V. V., Pismenskaya, N. D., Nikonenko, V. V., Dammak, L., Larchet, C., … Kononenko, N. A. (2017). Effect of homogenization and hydrophobization of a cation-exchange membrane surface on its scaling in the presence of calcium and magnesium chlorides during electrodialysis. Journal of Membrane Science, 540, 183-191. doi:10.1016/j.memsci.2017.06.030 | es_ES |