- -

Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports

Mostrar el registro completo del ítem

Palomino Roca, M.; Ono, H.; Valencia Valencia, S.; Corma Canós, A. (2020). Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports. Molecules. 25(18):1-13. https://doi.org/10.3390/molecules25184150

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172304

Ficheros en el ítem

Metadatos del ítem

Título: Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports
Autor: Palomino Roca, Miguel Ono, Hideki Valencia Valencia, Susana Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The preparation of continuous layers of highly hydrophobic pure silica ITQ-29 zeolite, potentially applicable as hydrophobic membranes for separation of molecules based on their polarity, has been investigated. ...[+]
Palabras clave: ITQ-29 zeolite , LTA structure , Pure silica , Zeolite membrane
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (eissn: 1420-3049 )
DOI: 10.3390/molecules25184150
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules25184150
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This research was funded by the European Research Council, grant ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government, through "Severo Ochoa" grant SEV-2016-0683 and RTI2018-101784-B-I00.
Tipo: Artículo

References

Mascal, M. (2012). Chemicals from biobutanol: technologies and markets. Biofuels, Bioproducts and Biorefining, 6(4), 483-493. doi:10.1002/bbb.1328

Ndaba, B., Chiyanzu, I., & Marx, S. (2015). n-Butanol derived from biochemical and chemical routes: A review. Biotechnology Reports, 8, 1-9. doi:10.1016/j.btre.2015.08.001

Huang, H.-J., Ramaswamy, S., & Liu, Y. (2014). Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 132, 513-540. doi:10.1016/j.seppur.2014.06.013 [+]
Mascal, M. (2012). Chemicals from biobutanol: technologies and markets. Biofuels, Bioproducts and Biorefining, 6(4), 483-493. doi:10.1002/bbb.1328

Ndaba, B., Chiyanzu, I., & Marx, S. (2015). n-Butanol derived from biochemical and chemical routes: A review. Biotechnology Reports, 8, 1-9. doi:10.1016/j.btre.2015.08.001

Huang, H.-J., Ramaswamy, S., & Liu, Y. (2014). Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 132, 513-540. doi:10.1016/j.seppur.2014.06.013

Barton, W. E., & Daugulis, A. (1992). Evaluation of solvents for extractive butanol fermentation with Clostridium acetobutylicum and the use of poly(propylene glycol) 1200. Applied Microbiology and Biotechnology, 36(5). doi:10.1007/bf00183241

Raganati, F., Procentese, A., Olivieri, G., Russo, M. E., Salatino, P., & Marzocchella, A. (2020). Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology, 235, 116145. doi:10.1016/j.seppur.2019.116145

Xue, C., Zhao, J.-B., Chen, L.-J., Bai, F.-W., Yang, S.-T., & Sun, J.-X. (2014). Integrated butanol recovery for an advanced biofuel: current state and prospects. Applied Microbiology and Biotechnology, 98(8), 3463-3474. doi:10.1007/s00253-014-5561-6

Sadrimajd, P., Rene, E. R., & Lens, P. N. L. (2019). Adsorptive recovery of alcohols from a model syngas fermentation broth. Fuel, 254, 115590. doi:10.1016/j.fuel.2019.05.173

Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering, 27(4), 215-222. doi:10.1007/s00449-005-0402-8

Milestone, N. B., & Bibby, D. M. (1981). Concentration of alcohols by adsorption on silicalite. Journal of Chemical Technology and Biotechnology, 31(1), 732-736. doi:10.1002/jctb.280310198

http://www.iza-structure.org/databases/

Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f

Dusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738

Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292c

Korelskiy, D., Leppäjärvi, T., Zhou, H., Grahn, M., Tanskanen, J., & Hedlund, J. (2013). High flux MFI membranes for pervaporation. Journal of Membrane Science, 427, 381-389. doi:10.1016/j.memsci.2012.10.016

Negishi, H., Sakaki, K., & Ikegami, T. (2010). Silicalite Pervaporation Membrane Exhibiting a Separation Factor of over 400 for Butanol. Chemistry Letters, 39(12), 1312-1314. doi:10.1246/cl.2010.1312

Ueno, K., Negishi, H., Okuno, T., Tawarayama, H., Ishikawa, S., Miyamoto, M., … Oumi, Y. (2019). Effects of seed crystal type on the growth and microstructures of silicalite-1 membranes on tubular silica supports via gel-free steam-assisted conversion. Microporous and Mesoporous Materials, 289, 109645. doi:10.1016/j.micromeso.2019.109645

Elyassi, B., Jeon, M. Y., Tsapatsis, M., Narasimharao, K., Basahel, S. N., & Al-Thabaiti, S. (2015). Ethanol/water mixture pervaporation performance of b -oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal, 62(2), 556-563. doi:10.1002/aic.15124

Lan, J., Saulat, H., Wu, H., Li, L., Yang, J., Lu, J., & Zhang, Y. (2020). Manipulation on microstructure of MFI membranes by binary structure directing agents. Microporous and Mesoporous Materials, 299, 110128. doi:10.1016/j.micromeso.2020.110128

Ueno, K., Yamada, S., Negishi, H., Okuno, T., Tawarayama, H., Ishikawa, S., … Oumi, Y. (2020). Fabrication of pure-silica *BEA-type zeolite membranes on tubular silica supports coated with dilute synthesis gel via steam-assisted conversion. Separation and Purification Technology, 247, 116934. doi:10.1016/j.seppur.2020.116934

Kida, K., Maeta, Y., & Yogo, K. (2018). Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separation and Purification Technology, 197, 116-121. doi:10.1016/j.seppur.2017.12.060

Imasaka, S., Nakai, A., Araki, S., & Yamamoto, H. (2018). Synthesis and Gas Permeation Properties of STT-type Zeolite Membranes. Journal of the Japan Petroleum Institute, 61(5), 263-271. doi:10.1627/jpi.61.263

Reed, T. B., & Breck, D. W. (1956). Crystalline Zeolites. II. Crystal Structure of Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5972-5977. doi:10.1021/ja01604a002

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

García, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207s

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Van der Perre, S., Gelin, P., Claessens, B., Martin-Calvo, A., Cousin Saint Remi, J., Duerinck, T., … Denayer, J. F. M. (2017). Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 10(14), 2968-2977. doi:10.1002/cssc.201700667

Serrano, D. P., Calleja, G., Botas, J. A., & Gutierrez, F. J. (2007). Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Separation and Purification Technology, 54(1), 1-9. doi:10.1016/j.seppur.2006.08.013

Zhang, K., Lively, R. P., Noel, J. D., Dose, M. E., McCool, B. A., Chance, R. R., & Koros, W. J. (2012). Adsorption of Water and Ethanol in MFI-Type Zeolites. Langmuir, 28(23), 8664-8673. doi:10.1021/la301122h

Demontis, P., Stara, G., & Suffritti, G. B. (2003). Behavior of Water in the Hydrophobic Zeolite Silicalite at Different Temperatures. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 107(18), 4426-4436. doi:10.1021/jp0300849

Tiscornia, I., Valencia, S., Corma, A., Téllez, C., Coronas, J., & Santamaría, J. (2008). Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous and Mesoporous Materials, 110(2-3), 303-309. doi:10.1016/j.micromeso.2007.06.019

Hunt, H. K., Lew, C. M., Sun, M., Yan, Y., & Davis, M. E. (2010). Pure-silica zeolite thin films by vapor phase transport of fluoride for low-k applications. Microporous and Mesoporous Materials, 128(1-3), 12-18. doi:10.1016/j.micromeso.2009.07.023

Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032

Casado-Coterillo, C., Fernández-Barquín, A., Valencia, S., & Irabien, Á. (2018). Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 8(2), 32. doi:10.3390/membranes8020032

Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641

Baerlocher, C., & McCusker, L. B. (1994). Practical Aspects of Powder Diffraction Data Analysis. Studies in Surface Science and Catalysis, 391-428. doi:10.1016/s0167-2991(08)60775-2

White, J., Dutta, P. K., Shqau, K., & Verweij, H. (2008). Synthesis of zeolite L membranes with sub-micron to micron thicknesses. Microporous and Mesoporous Materials, 115(3), 389-398. doi:10.1016/j.micromeso.2008.02.012

Lee, J. S., Kim, J. H., Lee, Y. J., Jeong, N. C., & Yoon, K. B. (2007). Manual Assembly of Microcrystal Monolayers on Substrates. Angewandte Chemie International Edition, 46(17), 3087-3090. doi:10.1002/anie.200604367

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem