- -

A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrera-Granda, Israel D. es_ES
dc.contributor.author Lorente-Leyva, Leandro L. es_ES
dc.contributor.author Peluffo-Ordóñez, Diego H. es_ES
dc.contributor.author Alemany Díaz, María Del Mar es_ES
dc.date.accessioned 2021-09-14T03:33:27Z
dc.date.available 2021-09-14T03:33:27Z
dc.date.issued 2021-01-07 es_ES
dc.identifier.issn 0302-9743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172310
dc.description.abstract [EN] Ecuador is worldwide considered as one of the main natural flower producers and exporters ¿being roses the most salient ones. Such a fact has naturally led the emergence of small and medium sized companies devoted to the production of quality roses in the Ecuadorian highlands, which intrinsically entails resource usage optimization. One of the first steps towards optimizing the use of resources is to forecast demand, since it enables a fair perspective of the future, in such a manner that the in-advance raw materials supply can be previewed against eventualities, resources usage can be properly planned, as well as the misuse can be avoided. Within this approach, the problem of forecasting the supply of roses was solved into two phases: the first phase consists of the macro-forecast of the total amount to be exported by the Ecuadorian flower sector by the year 2020, using multi-layer neural networks. In the second phase, the monthly demand for the main rose varieties offered by the study company was micro-forecasted by testing seven models. In addition, a Bayesian network model is designed, which takes into consideration macroeconomic aspects, the level of employability in Ecuador and weather-related aspects. This Bayesian network provided satisfactory results without the need for a large amount of historical data and at a low-computational cost. es_ES
dc.description.sponsorship Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS ¿Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems¿ (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015. In addition, the authors are greatly grateful by the support given by the SDAS Research Group (www.sdas-group.com) es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.relation.ispartof LOD 2020: Machine Learning, Optimization, and Data Science es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian-Networks-based forecasting es_ES
dc.subject Demand forecast es_ES
dc.subject Floriculture sector es_ES
dc.subject Neural-Networks-based forecasting es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-030-64580-9_21 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/691249/EU/Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Herrera-Granda, ID.; Lorente-Leyva, LL.; Peluffo-Ordóñez, DH.; Alemany Díaz, MDM. (2021). A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios. Lecture Notes in Computer Science. 12566:245-258. https://doi.org/10.1007/978-3-030-64580-9_21 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th International Conference on Machine Learning, Optimization, and Data Science (LOD 2020) es_ES
dc.relation.conferencedate Julio 19-23,2020 es_ES
dc.relation.conferenceplace Siena, Italy es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-64580-9_21 es_ES
dc.description.upvformatpinicio 245 es_ES
dc.description.upvformatpfin 258 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12566 es_ES
dc.relation.pasarela S\430740 es_ES
dc.contributor.funder COMISION DE LAS COMUNIDADES EUROPEA es_ES
dc.description.references Asociación de Productores y Exportadores de Flores: Inicio – Expoflores. https://expoflores.com/ es_ES
dc.description.references Palacios, J., Rosero, D.: Análisis de las condiciones climáticas registradas en el Ecuador continental en el año 2013 y su impacto en el sector agrícola. Estud. e Investig. meteorológicas. Ina. Inst. Nac. Meteorol. e Hidrol. Ecuador, 28, p. (2014) es_ES
dc.description.references Hidalgo-Proaño, M.: Variabilidad climática interanual sobre el Ecuador asociada a ENOS. CienciAmérica 6, 42–47 (2017) es_ES
dc.description.references Ritchie, J.W., Abawi, G.Y., Dutta, S.C., Harris, T.R., Bange, M.: Risk management strategies using seasonal climate forecasting in irrigated cotton production: a tale of stochastic dominance. Aust. J. Agric. Resour. Econ. 48, 65–93 (2004). https://doi.org/10.1111/j.1467-8489.2004.t01-1-00230.x es_ES
dc.description.references Letson, D., Podesta, G.P., Messina, C.D., Ferreyra, R.A.: The uncertain value of perfect ENSO phase forecasts: Stochastic agricultural prices and intra-phase climatic variations. Clim. Change 69, 163–196 (2005). https://doi.org/10.1007/s10584-005-1814-9 es_ES
dc.description.references Weber, E.U., Laciana, C., Bert, F., Letson, D.: Agricultural decision making in the argentine Pampas: Modeling the interaction between uncertain and complex environments and heterogeneous and complex decision makers (2008) es_ES
dc.description.references Loy, J.-P., Pieniadz, A.: Optimal grain marketing revisited a german and polish perspective. Outlook Agric. 38, 47–54 (2009). https://doi.org/10.5367/000000009787762761 es_ES
dc.description.references Wang, Q.J., Robertson, D.E., Haines, C.L.: A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development. WATER Resour. Res. 45 (2009). https://doi.org/10.1029/2006wr005419 es_ES
dc.description.references Keesman, K.J., Doeswijk, T.: uncertainty analysis of weather controlled systems (2010). https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960073961&doi=10.1007%2F978-3-642-03735-1_12&partnerID=40&md5=210525584472097e996a9f124f96fddb es_ES
dc.description.references Schnepf, R.: U.S. livestock and poultry feed use and availability: background and emerging issues. In: Feed Market Dynamics and U.S. Livestock Implications. pp. 1–36. Nova Science Publishers, Inc., CRS, United States (2012) es_ES
dc.description.references Medellín-Azuara, J., Howitt, R.E., MacEwan, D.J., Lund, J.R.: Economic impacts of climate-related changes to California agriculture. Clim. Change 109, 387–405 (2011). https://doi.org/10.1007/s10584-011-0314-3 es_ES
dc.description.references McCown, R.L., Carberry, P.S., Dalgliesh, N.P., Foale, M.A., Hochman, Z.: Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agric. Syst. 106, 33–45 (2012). https://doi.org/10.1016/j.agsy.2011.10.005 es_ES
dc.description.references Scott, S.L., Varian, H.R.: Predicting the present with bayesian structural time series. Available SSRN 2304426 (2013) es_ES
dc.description.references Prudhomme, C., Shaffrey, L., Woollings, T., Jackson, C., Fowler, H., Anderson, B.: IMPETUS: Improving predictions of drought for user decision-making. International Conference on Drought: Research and Science-Policy Interfacing, 2015. pp. 273–278. CRC Press/Balkema, Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom (2015) es_ES
dc.description.references Wiles, P., Enke, D.: A hybrid neuro-fuzzy model to forecast the Soybean complex. International Annual Conference of the American Society for Engineering Management 2015, ASEM 2015. pp. 1–5. American Society for Engineering Management, Missouri University of Science and Technology, Engineering Management and Systems Engineering Department, United States (2015) es_ES
dc.description.references Hansen, B.G., Li, Y.: An analysis of past world market prices of feed and milk and predictions for the future. Agribusiness 33, 175–193 (2017). https://doi.org/10.1002/agr.21474 es_ES
dc.description.references Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A., Bedard, F.: Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 218, 74–84 (2016). https://doi.org/10.1016/j.agrformet.2015.11.003 es_ES
dc.description.references Chen, J., Yang, J., Zhao, J., Xu, F., Shen, Z., Zhang, L.: Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing 174, 1087–1100 (2016). https://doi.org/10.1016/j.neucom.2015.09.105 es_ES
dc.description.references Fodor, N., et al.: Integrating plant science and crop modeling: assessment of the impact of climate change on soybean and maize production. Plant Cell Physiol. 58, 1833–1847 (2017). https://doi.org/10.1093/pcp/pcx141 es_ES
dc.description.references Chapman, R., et al.: Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: a proof of concept analysis. Comput. Electron. Agric. 151, 338–348 (2018). https://doi.org/10.1016/j.compag.2018.06.006 es_ES
dc.description.references Lara-Estrada, L., Rasche, L., Sucar, L.E., Schneider, U.A.: Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks. LAND. 7 (2018). https://doi.org/10.3390/land7010004 es_ES
dc.description.references Abdelaal, H.S.A., Thilmany, D.: Grains production prospects and long run food security in Egypt. Sustain. 11 (2019). https://doi.org/10.3390/su11164457 es_ES
dc.description.references Kusunose, Y., Ma, L., Van Sanford, D.: User responses to imperfect forecasts: findings from an experiment with Kentucky wheat farmers. Weather. Clim. Soc. 11, 791–808 (2019). https://doi.org/10.1175/wcas-d-18-0135.1 es_ES
dc.description.references Kadigi, I.L., et al.: Forecasting yields, prices and net returns for main cereal crops in Tanzania as probability distributions: a multivariate empirical (MVE) approach. Agric. Syst. 180 (2020). https://doi.org/10.1016/j.agsy.2019.102693 es_ES
dc.description.references McGrath, G., Rao, P.S.C., Mellander, P.-E., Kennedy, I., Rose, M., van Zwieten, L.: Real-time forecasting of pesticide concentrations in soil. Sci. Total Environ. 663, 709–717 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.401 es_ES
dc.description.references Yang, B., Xie, L.: Bayesian network modelling for “direct farm” mode based agricultural supply chain risk. Ekoloji 28, 2361–2368 (2019) es_ES
dc.description.references Zaporozhtseva, L.A., Sabetova, T. V, Yu Fedulova, I.: Assessment of the uncertainty factors in computer modelling of an agricultural company operation. International Conference on Information Technologies in Business and Industries, ITBI 2019. Institute of Physics Publishing, Voronezh State Agrarian University, Michurina Str. 30, Voronezh, 394087, Russian Federation (2019) es_ES
dc.description.references Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley (2015) es_ES
dc.description.references Hanke, J., Wichern, D.: Business forecast. Pearson Educación (2010) es_ES
dc.description.references Novagric: Invernaderos para Cultivo de Rosas. https://www.novagric.com/es/invernaderos-rosas es_ES
dc.description.references Weather Spark: Clima promedio en Quito, Ecuador, durante todo el año - Weather Spark. https://es.weatherspark.com/y/20030/Clima-promedio-en-Quito-Ecuador-durante-todo-el-año es_ES
dc.description.references Instituto Nacional de Estadísticas y Censos-INEC: Encuesta Nacional de Empleo, Desempleo y subempleo-ENEMDU. https://www.ecuadorencifras.gob.ec/empleo-diciembre-2019/ es_ES
dc.description.references Central Bank of Ecuador: Central Bank of Ecuador. www.bce.fin.ec es_ES
dc.description.references Hyndman, R., Athnasopoulos, G.: Forecasting: Principles and Practice. OTexts, Australia (2018) es_ES
dc.description.references Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Rojas, I., Joya, G.C.A. (eds.) International Work-Conference on Artificial Neural Networks, pp. 362–373. Springer, Canaria (2019) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem