Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera-Granda, Israel D. | es_ES |
dc.contributor.author | Lorente-Leyva, Leandro L. | es_ES |
dc.contributor.author | Peluffo-Ordóñez, Diego H. | es_ES |
dc.contributor.author | Alemany Díaz, María Del Mar | es_ES |
dc.date.accessioned | 2021-09-14T03:33:27Z | |
dc.date.available | 2021-09-14T03:33:27Z | |
dc.date.issued | 2021-01-07 | es_ES |
dc.identifier.issn | 0302-9743 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172310 | |
dc.description.abstract | [EN] Ecuador is worldwide considered as one of the main natural flower producers and exporters ¿being roses the most salient ones. Such a fact has naturally led the emergence of small and medium sized companies devoted to the production of quality roses in the Ecuadorian highlands, which intrinsically entails resource usage optimization. One of the first steps towards optimizing the use of resources is to forecast demand, since it enables a fair perspective of the future, in such a manner that the in-advance raw materials supply can be previewed against eventualities, resources usage can be properly planned, as well as the misuse can be avoided. Within this approach, the problem of forecasting the supply of roses was solved into two phases: the first phase consists of the macro-forecast of the total amount to be exported by the Ecuadorian flower sector by the year 2020, using multi-layer neural networks. In the second phase, the monthly demand for the main rose varieties offered by the study company was micro-forecasted by testing seven models. In addition, a Bayesian network model is designed, which takes into consideration macroeconomic aspects, the level of employability in Ecuador and weather-related aspects. This Bayesian network provided satisfactory results without the need for a large amount of historical data and at a low-computational cost. | es_ES |
dc.description.sponsorship | Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS ¿Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems¿ (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015. In addition, the authors are greatly grateful by the support given by the SDAS Research Group (www.sdas-group.com) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Lecture Notes in Computer Science | es_ES |
dc.relation.ispartof | LOD 2020: Machine Learning, Optimization, and Data Science | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bayesian-Networks-based forecasting | es_ES |
dc.subject | Demand forecast | es_ES |
dc.subject | Floriculture sector | es_ES |
dc.subject | Neural-Networks-based forecasting | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-3-030-64580-9_21 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/691249/EU/Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Herrera-Granda, ID.; Lorente-Leyva, LL.; Peluffo-Ordóñez, DH.; Alemany Díaz, MDM. (2021). A Forecasting Model to Predict the Demand of Roses in an Ecuadorian Small Business Under Uncertain Scenarios. Lecture Notes in Computer Science. 12566:245-258. https://doi.org/10.1007/978-3-030-64580-9_21 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th International Conference on Machine Learning, Optimization, and Data Science (LOD 2020) | es_ES |
dc.relation.conferencedate | Julio 19-23,2020 | es_ES |
dc.relation.conferenceplace | Siena, Italy | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-64580-9_21 | es_ES |
dc.description.upvformatpinicio | 245 | es_ES |
dc.description.upvformatpfin | 258 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12566 | es_ES |
dc.relation.pasarela | S\430740 | es_ES |
dc.contributor.funder | COMISION DE LAS COMUNIDADES EUROPEA | es_ES |
dc.description.references | Asociación de Productores y Exportadores de Flores: Inicio – Expoflores. https://expoflores.com/ | es_ES |
dc.description.references | Palacios, J., Rosero, D.: Análisis de las condiciones climáticas registradas en el Ecuador continental en el año 2013 y su impacto en el sector agrícola. Estud. e Investig. meteorológicas. Ina. Inst. Nac. Meteorol. e Hidrol. Ecuador, 28, p. (2014) | es_ES |
dc.description.references | Hidalgo-Proaño, M.: Variabilidad climática interanual sobre el Ecuador asociada a ENOS. CienciAmérica 6, 42–47 (2017) | es_ES |
dc.description.references | Ritchie, J.W., Abawi, G.Y., Dutta, S.C., Harris, T.R., Bange, M.: Risk management strategies using seasonal climate forecasting in irrigated cotton production: a tale of stochastic dominance. Aust. J. Agric. Resour. Econ. 48, 65–93 (2004). https://doi.org/10.1111/j.1467-8489.2004.t01-1-00230.x | es_ES |
dc.description.references | Letson, D., Podesta, G.P., Messina, C.D., Ferreyra, R.A.: The uncertain value of perfect ENSO phase forecasts: Stochastic agricultural prices and intra-phase climatic variations. Clim. Change 69, 163–196 (2005). https://doi.org/10.1007/s10584-005-1814-9 | es_ES |
dc.description.references | Weber, E.U., Laciana, C., Bert, F., Letson, D.: Agricultural decision making in the argentine Pampas: Modeling the interaction between uncertain and complex environments and heterogeneous and complex decision makers (2008) | es_ES |
dc.description.references | Loy, J.-P., Pieniadz, A.: Optimal grain marketing revisited a german and polish perspective. Outlook Agric. 38, 47–54 (2009). https://doi.org/10.5367/000000009787762761 | es_ES |
dc.description.references | Wang, Q.J., Robertson, D.E., Haines, C.L.: A Bayesian network approach to knowledge integration and representation of farm irrigation: 1. Model development. WATER Resour. Res. 45 (2009). https://doi.org/10.1029/2006wr005419 | es_ES |
dc.description.references | Keesman, K.J., Doeswijk, T.: uncertainty analysis of weather controlled systems (2010). https://www.scopus.com/inward/record.uri?eid=2-s2.0-79960073961&doi=10.1007%2F978-3-642-03735-1_12&partnerID=40&md5=210525584472097e996a9f124f96fddb | es_ES |
dc.description.references | Schnepf, R.: U.S. livestock and poultry feed use and availability: background and emerging issues. In: Feed Market Dynamics and U.S. Livestock Implications. pp. 1–36. Nova Science Publishers, Inc., CRS, United States (2012) | es_ES |
dc.description.references | Medellín-Azuara, J., Howitt, R.E., MacEwan, D.J., Lund, J.R.: Economic impacts of climate-related changes to California agriculture. Clim. Change 109, 387–405 (2011). https://doi.org/10.1007/s10584-011-0314-3 | es_ES |
dc.description.references | McCown, R.L., Carberry, P.S., Dalgliesh, N.P., Foale, M.A., Hochman, Z.: Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agric. Syst. 106, 33–45 (2012). https://doi.org/10.1016/j.agsy.2011.10.005 | es_ES |
dc.description.references | Scott, S.L., Varian, H.R.: Predicting the present with bayesian structural time series. Available SSRN 2304426 (2013) | es_ES |
dc.description.references | Prudhomme, C., Shaffrey, L., Woollings, T., Jackson, C., Fowler, H., Anderson, B.: IMPETUS: Improving predictions of drought for user decision-making. International Conference on Drought: Research and Science-Policy Interfacing, 2015. pp. 273–278. CRC Press/Balkema, Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom (2015) | es_ES |
dc.description.references | Wiles, P., Enke, D.: A hybrid neuro-fuzzy model to forecast the Soybean complex. International Annual Conference of the American Society for Engineering Management 2015, ASEM 2015. pp. 1–5. American Society for Engineering Management, Missouri University of Science and Technology, Engineering Management and Systems Engineering Department, United States (2015) | es_ES |
dc.description.references | Hansen, B.G., Li, Y.: An analysis of past world market prices of feed and milk and predictions for the future. Agribusiness 33, 175–193 (2017). https://doi.org/10.1002/agr.21474 | es_ES |
dc.description.references | Johnson, M.D., Hsieh, W.W., Cannon, A.J., Davidson, A., Bedard, F.: Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 218, 74–84 (2016). https://doi.org/10.1016/j.agrformet.2015.11.003 | es_ES |
dc.description.references | Chen, J., Yang, J., Zhao, J., Xu, F., Shen, Z., Zhang, L.: Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing 174, 1087–1100 (2016). https://doi.org/10.1016/j.neucom.2015.09.105 | es_ES |
dc.description.references | Fodor, N., et al.: Integrating plant science and crop modeling: assessment of the impact of climate change on soybean and maize production. Plant Cell Physiol. 58, 1833–1847 (2017). https://doi.org/10.1093/pcp/pcx141 | es_ES |
dc.description.references | Chapman, R., et al.: Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: a proof of concept analysis. Comput. Electron. Agric. 151, 338–348 (2018). https://doi.org/10.1016/j.compag.2018.06.006 | es_ES |
dc.description.references | Lara-Estrada, L., Rasche, L., Sucar, L.E., Schneider, U.A.: Inferring Missing Climate Data for Agricultural Planning Using Bayesian Networks. LAND. 7 (2018). https://doi.org/10.3390/land7010004 | es_ES |
dc.description.references | Abdelaal, H.S.A., Thilmany, D.: Grains production prospects and long run food security in Egypt. Sustain. 11 (2019). https://doi.org/10.3390/su11164457 | es_ES |
dc.description.references | Kusunose, Y., Ma, L., Van Sanford, D.: User responses to imperfect forecasts: findings from an experiment with Kentucky wheat farmers. Weather. Clim. Soc. 11, 791–808 (2019). https://doi.org/10.1175/wcas-d-18-0135.1 | es_ES |
dc.description.references | Kadigi, I.L., et al.: Forecasting yields, prices and net returns for main cereal crops in Tanzania as probability distributions: a multivariate empirical (MVE) approach. Agric. Syst. 180 (2020). https://doi.org/10.1016/j.agsy.2019.102693 | es_ES |
dc.description.references | McGrath, G., Rao, P.S.C., Mellander, P.-E., Kennedy, I., Rose, M., van Zwieten, L.: Real-time forecasting of pesticide concentrations in soil. Sci. Total Environ. 663, 709–717 (2019). https://doi.org/10.1016/j.scitotenv.2019.01.401 | es_ES |
dc.description.references | Yang, B., Xie, L.: Bayesian network modelling for “direct farm” mode based agricultural supply chain risk. Ekoloji 28, 2361–2368 (2019) | es_ES |
dc.description.references | Zaporozhtseva, L.A., Sabetova, T. V, Yu Fedulova, I.: Assessment of the uncertainty factors in computer modelling of an agricultural company operation. International Conference on Information Technologies in Business and Industries, ITBI 2019. Institute of Physics Publishing, Voronezh State Agrarian University, Michurina Str. 30, Voronezh, 394087, Russian Federation (2019) | es_ES |
dc.description.references | Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley (2015) | es_ES |
dc.description.references | Hanke, J., Wichern, D.: Business forecast. Pearson Educación (2010) | es_ES |
dc.description.references | Novagric: Invernaderos para Cultivo de Rosas. https://www.novagric.com/es/invernaderos-rosas | es_ES |
dc.description.references | Weather Spark: Clima promedio en Quito, Ecuador, durante todo el año - Weather Spark. https://es.weatherspark.com/y/20030/Clima-promedio-en-Quito-Ecuador-durante-todo-el-año | es_ES |
dc.description.references | Instituto Nacional de Estadísticas y Censos-INEC: Encuesta Nacional de Empleo, Desempleo y subempleo-ENEMDU. https://www.ecuadorencifras.gob.ec/empleo-diciembre-2019/ | es_ES |
dc.description.references | Central Bank of Ecuador: Central Bank of Ecuador. www.bce.fin.ec | es_ES |
dc.description.references | Hyndman, R., Athnasopoulos, G.: Forecasting: Principles and Practice. OTexts, Australia (2018) | es_ES |
dc.description.references | Herrera-Granda, I.D., et al.: Artificial neural networks for bottled water demand forecasting: a small business case study. In: Rojas, I., Joya, G.C.A. (eds.) International Work-Conference on Artificial Neural Networks, pp. 362–373. Springer, Canaria (2019) | es_ES |