Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Orallo, José | es_ES |
dc.date.accessioned | 2021-09-14T03:33:33Z | |
dc.date.available | 2021-09-14T03:33:33Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.issn | 0924-6495 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172312 | |
dc.description.abstract | [EN] In the last 20 years the Turing test has been left further behind by new developments in artificial intelligence. At the same time, however, these developments have revived some key elements of the Turing test: imitation and adversarialness. On the one hand, many generative models, such as generative adversarial networks (GAN), build imitators under an adversarial setting that strongly resembles the Turing test (with the judge being a learnt discriminative model). The term "Turing learning" has been used for this kind of setting. On the other hand, AI benchmarks are suffering an adversarial situation too, with a 'challenge-solve-and-replace' evaluation dynamics whenever human performance is 'imitated'. The particular AI community rushes to replace the old benchmark by a more challenging benchmark, one for which human performance would still be beyond AI. These two phenomena related to the Turing test are sufficiently distinctive, important and general for a detailed analysis. This is the main goal of this paper. After recognising the abyss that appears beyond superhuman performance, we build on Turing learning to identify two different evaluation schemas: Turing testing and adversarial testing. We revisit some of the key questions surrounding the Turing test, such as 'understanding', commonsense reasoning and extracting meaning from the world, and explore how the new testing paradigms should work to unmask the limitations of current and future AI. Finally, we discuss how behavioural similarity metrics could be used to create taxonomies for artificial and natural intelligence. Both testing schemas should complete a transition in which humans should give way to machines-not only as references to be imitated but also as judges-when pursuing and measuring machine intelligence. | es_ES |
dc.description.sponsorship | I appreciate the reviewers' comments, leading to new Sect. 5, among other modifications and insights in the final version. This work was funded by the Future of Life Institute, FLI, under grant RFP2-152, and also supported by the EU (FEDER) and Spanish MINECO under RTI2018-094403B-C32, and Generalitat Valenciana under PROMETEO/2019/098. Figure 1 was kindly generated on purpose by Fernando Martinez-Plumed. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Minds and Machines | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Turing test | es_ES |
dc.subject | Turing learning | es_ES |
dc.subject | Imitation | es_ES |
dc.subject | Adversarial models | es_ES |
dc.subject | Intelligence evaluation | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Twenty Years Beyond the Turing Test: Moving Beyond the Human Judges Too | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11023-020-09549-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FLI//RFP2-152/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F098/ES/DeepTrust: Deep Logic Technology for Software Trustworthiness/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094403-B-C32/ES/RAZONAMIENTO FORMAL PARA TECNOLOGIAS FACILITADORAS Y EMERGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Hernández-Orallo, J. (2020). Twenty Years Beyond the Turing Test: Moving Beyond the Human Judges Too. Minds and Machines. 30(4):533-562. https://doi.org/10.1007/s11023-020-09549-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11023-020-09549-0 | es_ES |
dc.description.upvformatpinicio | 533 | es_ES |
dc.description.upvformatpfin | 562 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 30 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\431825 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Future of Life Institute | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Adiwardana, D., Luong, M. T., So, D. R., Hall, J., Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade, G., Lu, Y., et al. (2020) Towards a human-like open-domain chatbot. arXiv:200109977. | es_ES |
dc.description.references | Alvarado, N., Adams, S. S., Burbeck, S., & Latta, C. (2002). Beyond the Turing test: Performance metrics for evaluating a computer simulation of the human mind. In The 2nd international conference on development and learning, 2002 (pp. 147–152). IEEE. | es_ES |
dc.description.references | Arel, I., & Livingston, S. (2009). Beyond the Turing test. Computer, 42(3), 90–91. | es_ES |
dc.description.references | Armstrong, S., & Sotala, K. (2015). How we’re predicting AI–or failing to. In Beyond artificial intelligence(pp. 11–29). New York: Springer. | es_ES |
dc.description.references | Arora, S., Ge, R., Liang, Y., Ma, T., & Zhang, Y. (2017). Generalization and equilibrium in generative adversarial nets (GANS). In Proceedings of the 34th international conference on machine learning (Vol. 70, pp. 224–232). JMLR. org. | es_ES |
dc.description.references | Bhatnagar, S., et al. (2017). Mapping intelligence: Requirements and possibilities. In PTAI (pp. 117–135). New York: Springer. | es_ES |
dc.description.references | Bongard, M. M. (1970). Pattern Recognition. New York: Spartan Books. | es_ES |
dc.description.references | Borg, M., Johansen, S. S., Thomsen, D. L., & Kraus, M. (2012). Practical implementation of a graphics Turing test. In Advances in visual computing (pp. 305–313). New York: Springer. | es_ES |
dc.description.references | Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press. | es_ES |
dc.description.references | Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv:180911096. | es_ES |
dc.description.references | Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv:200514165. | es_ES |
dc.description.references | Burkart, J. M., Schubiger, M. N., & van Schaik, C. P. (2017). The evolution of general intelligence. Behavioral and Brain Sciences, 40, e195. | es_ES |
dc.description.references | Burr, C., & Cristianini, N. (2019). Can machines read our minds? Minds and Machines, 29(3), 461–494. | es_ES |
dc.description.references | Campbell, M., Hoane, A. J., & Hsu, F. (2002). Deep Blue. Artificial Intelligence, 134(1–2), 57–83. | es_ES |
dc.description.references | Chollet, F. (2019). The measure of intelligence. arXiv:191101547. | es_ES |
dc.description.references | Cohen, P. R. (2005). If not Turing’s test, then what? AI Magazine, 26(4), 61. | es_ES |
dc.description.references | Copeland, B. J. (2000). The Turing test. Minds and Machines, 10(4), 519–539. | es_ES |
dc.description.references | Copeland, J., & Proudfoot, D. (2008). Turing’s test. A philosophical and historical guide. In R. Epstein, G. Roberts, G. Beber (Eds.), Parsing the Turing Test. Philosophical and Methodological Issues in the Quest for the Thinking Computer. New York: Springer. | es_ES |
dc.description.references | Crosby, M., Beyret, B., Shanahan, M., Hernandez-Orallo, J., Cheke, L., & Halina, M. (2020). The animal-AI testbed and competition. Proceedings of Machine Learning Research, 123, 164–176. | es_ES |
dc.description.references | Crosby, M., Beyret, B., Hernandez-Orallo, J., Cheke, L., Halina, M., & Shanahan, M. (2019). Translating from animal cognition to AI. NeurIPS workshop on biological and artificial reinforcement learning. | es_ES |
dc.description.references | Davis, E., & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9), 92–103. | es_ES |
dc.description.references | Dennett, D. C. (1971). Intentional systems. The Journal of Philosophy, 68, 87–106. | es_ES |
dc.description.references | Dodge, S., & Karam, L. (2017). A study and comparison of human and deep learning recognition performance under visual distortions. In ICCCN (pp. 1–7). IEEE. | es_ES |
dc.description.references | Dowe, D. L., & Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81. | es_ES |
dc.description.references | Dowe, D. L., & Hernández-Orallo, J. (2014). How universal can an intelligence test be? Adaptive Behavior, 22(1), 51–69. | es_ES |
dc.description.references | Dowe, D. L., Hernández-Orallo, J., & Das, P. K. (2011). Compression and intelligence: Social environments and communication. In J. Schmidhuber, K. Thórisson, & M. Looks (Eds.), Artificial general intelligence (Vol. 6830, pp. 204–211)., LNAI series New York: Springer. | es_ES |
dc.description.references | Dowe, D. L., Hajek, A. R. (1997). A computational extension to the Turing test. In Proceedings of the 4th Conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia. Also as Technical Report #97/322, Dept Computer Science, Monash University, Australia. | es_ES |
dc.description.references | Dowe, D. L., Hajek, A. R. (1998). A non-behavioural, computational extension to the Turing Test. In Intl. conf. on computational intelligence & multimedia applications (ICCIMA’98) (pp. 101–106). Gippsland, Australia. | es_ES |
dc.description.references | Fabra-Boluda, R., Ferri, C., Martínez-Plumed, F., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2020). Family and prejudice: A behavioural taxonomy of machine learning techniques. In ECAI 2020—24st European conference on artificial intelligence. | es_ES |
dc.description.references | Flach, P. (2019). Performance evaluation in machine learning: The good, the bad, the ugly and the way forward. In AAAI. | es_ES |
dc.description.references | Fostel, G. (1993). The Turing test is for the birds. ACM SIGART Bulletin, 4(1), 7–8. | es_ES |
dc.description.references | French, R. M. (1990). Subcognition and the limits of the Turing test. Mind, 99(393), 53–65. | es_ES |
dc.description.references | French, R. M. (2000). The Turing test: The first 50 years. Trends in Cognitive Sciences, 4(3), 115–122. | es_ES |
dc.description.references | French, R. M. (2012). Moving beyond the Turing test. Communications of the ACM, 55(12), 74–77. https://doi.org/10.1145/2380656.2380674. | es_ES |
dc.description.references | Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT press. | es_ES |
dc.description.references | Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014a). Generative adversarial nets. In Advances in neural information processing systems (pp 2672–2680). | es_ES |
dc.description.references | Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014b). Explaining and harnessing adversarial examples. arXiv:14126572. | es_ES |
dc.description.references | Groß, R., Gu, Y., Li, W., & Gauci, M. (2017). Generalizing GANs: A Turing perspective. In Advances in neural information processing systems (pp. 6316–6326). | es_ES |
dc.description.references | Gunning, D. (2018). Machine common sense concept paper. arXiv:181007528. | es_ES |
dc.description.references | Harnad, S. (1992). The Turing test is not a trick: Turing indistinguishability is a scientific criterion. ACM SIGART Bulletin, 3(4), 9–10. | es_ES |
dc.description.references | Hayes, P., & Ford, K. (1995). Turing test considered harmful. In International joint conference on artificial intelligence (IJCAI) (pp 972–977). | es_ES |
dc.description.references | Hernandez-Orallo, J. (2015). Stochastic tasks: Difficulty and Levin search. In J. Bieger, B. Goertzel, & A. Potapov (Eds.), Artificial general intelligence—8th international conference, AGI 2015, Berlin, Germany, July 22–25, 2015 (pp. 90–100). New York: Springer. | es_ES |
dc.description.references | Hernández-Orallo, J. (2000). Beyond the Turing test. Journal of Logic, Language & Information, 9(4), 447–466. | es_ES |
dc.description.references | Hernández-Orallo, J. (2001). On the computational measurement of intelligence factors (pp. 72–79). Gaithersburg: NIST Special Publication. | es_ES |
dc.description.references | Hernández-Orallo, J. (2015). On environment difficulty and discriminating power. Autonomous Agents and Multi-Agent Systems, 29, 402–454. | es_ES |
dc.description.references | Hernández-Orallo, J. (2017a). Evaluation in artificial intelligence: From task-oriented to ability-oriented measurement. Artificial Intelligence Review, 48(3), 397–447. | es_ES |
dc.description.references | Hernández-Orallo, J. (2017b). The measure of all minds: Evaluating natural and artificial intelligence. Cambridge: Cambridge University Press. | es_ES |
dc.description.references | Hernández-Orallo, J. (2019a). Gazing into clever Hans machines. Nature Machine Intelligence, 1(4), 172–173. | es_ES |
dc.description.references | Hernández-Orallo, J. (2019b). Unbridled mental power. Nature Physics, 15(1), 106. | es_ES |
dc.description.references | Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539. | es_ES |
dc.description.references | Hernández-Orallo, J., & Dowe, D. L. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines, 23(2), 179–210. | es_ES |
dc.description.references | Hernández-Orallo, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Insa-Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In J. Schmidhuber, K. Thórisson, & M. Looks (Eds.), Artificial general intelligence (Vol. 6830, pp. 82–91)., LNAI New York: Springer. | es_ES |
dc.description.references | Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2014). Universal psychometrics: Measuring cognitive abilities in the machine kingdom. Cognitive Systems Research, 27, 50–74. | es_ES |
dc.description.references | Hernández-Orallo, J., Insa-Cabrera, J., Dowe, D. L., & Hibbard, B. (2012). Turing tests with Turing machines. Turing, 10, 140–156. | es_ES |
dc.description.references | Hernández-Orallo, J., Martínez-Plumed, F., Schmid, U., Siebers, M., & Dowe, D. L. (2016). Computer models solving intelligence test problems: Progress and implications. Artificial Intelligence, 230, 74–107. | es_ES |
dc.description.references | Hernández-Orallo, J. (2015). C-tests revisited: Back and forth with complexity. In J. Bieger, B. Goertzel, & A. Potapov (Eds.), Artificial general intelligence—8th international conference, AGI 2015, Berlin, Germany, July 22–25, 2015. New York: Springer (pp. 272–282). | es_ES |
dc.description.references | Hernández-Orallo, J. (2020). AI evaluation: On broken yardsticks and measurement scales. Evaluating AI Evaluation @ AAAI. | es_ES |
dc.description.references | Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proc. intl symposium of engineering of intelligent systems (EIS’98) (pp. 146–163). ICSC Press. | es_ES |
dc.description.references | Hernández-Orallo, J., & Vold, K. (2019). Ai extenders: The ethical and societal implications of humans cognitively extended by ai. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 507–513). | es_ES |
dc.description.references | Hernández-Orallo, J., Insa-Cabrera, J., Dowe, D.L., & Hibbard, B. (2012). Turing machines and recursive Turing Tests. In V. Muller, & A. Ayesh (Eds.), AISB/IACAP 2012 Symposium “Revisiting Turing and his Test”, The Society for the Study of Artificial Intelligence and the Simulation of Behaviour, pp 28–33. | es_ES |
dc.description.references | Hernández-Orallo, J., Baroni, M., Bieger, J., Chmait, N., Dowe, D. L., Hofmann, K., et al. (2017). A new AI evaluation cosmos: Ready to play the game? AI Magazine, 38(3), Fall 2007. | es_ES |
dc.description.references | Hibbard, B. (2008). Adversarial sequence prediction. Frontiers in Artificial Intelligence and Applications, 171, 399. | es_ES |
dc.description.references | Hibbard, B. (2011). Measuring agent intelligence via hierarchies of environments. In Artificial general intelligence (pp. 303–308). New York: Springer. | es_ES |
dc.description.references | Hingston, P. (2009). The 2k botprize. In IEEE symposium on computational intelligence and games (CIG 2009) (pp. 1–1). IEEE. | es_ES |
dc.description.references | Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length and Helmholtz free energy. In Advances in neural information processing systems (pp. 3–10). | es_ES |
dc.description.references | Hofstadter, D. R. (1980). Gödel, escher, bach. New York: Vintage Books. | es_ES |
dc.description.references | Hofstadter, D. R., & Mitchell, M. (1994). The Copycat project: A model of mental fluidity and analogy-making. Norwood, NJ: Ablex Publishing. | es_ES |
dc.description.references | Insa-Cabrera, J., Dowe, D. L., España-Cubillo, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In International conference on artificial general intelligence (pp. 122–132). New York: Springer. | es_ES |
dc.description.references | Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In J. Lozano, J. Gamez, & J. Moreno (Eds.), Current topics in artificial intelligence (CAEPIA 2011). LNAI Series 7023. New York: Springer. | es_ES |
dc.description.references | Jiang, Z., Xu, F. F., Araki, J., & Neubig, G. (2020b). How can we know what language models know? Transactions of the Association for Computational Linguistics, 8, 423–438. | es_ES |
dc.description.references | Jiang, M., Luketina, J., Nardelli, N., Minervini, P., Torr, P. H., Whiteson, S., & Rocktäschel, T. (2020a). Wordcraft: An environment for benchmarking commonsense agents. arXiv:200709185. | es_ES |
dc.description.references | Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto, https://www.cs.toronto.edu/~kriz/cifar.html. | es_ES |
dc.description.references | Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., & Aila, T. (2019). Improved precision and recall metric for assessing generative models. arXiv:190406991. | es_ES |
dc.description.references | Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. | es_ES |
dc.description.references | Leibo, J. Z., et al. (2018). Psychlab: A psychology laboratory for deep reinforcement learning agents. arXiv:180108116. | es_ES |
dc.description.references | Levesque, H. J. (2017). Common sense, the Turing test, and the quest for real AI. New York: MIT Press. | es_ES |
dc.description.references | Levesque, H., Davis, E., & Morgenstern, L. (2012). The Winograd schema challenge. In Thirteenth international conference on the principles of knowledge representation and reasoning. | es_ES |
dc.description.references | Li, W., Gauci, M., & Groß, R. (2016). Turing learning: A metric-free approach to inferring behavior and its application to swarms. Swarm Intelligence, 10(3), 211–243. | es_ES |
dc.description.references | Li, W., Gauci, M., & Groß, R. (2013). A coevolutionary approach to learn animal behavior through controlled interaction. In Proceedings of the 15th annual conference on Genetic and evolutionary computation (pp. 223–230). | es_ES |
dc.description.references | van der Linden, W. J. (2008). Using response times for item selection in adaptive testing. Journal of Educational and Behavioral Statistics, 33(1), 5–20. | es_ES |
dc.description.references | Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence (pp 970–970). AAAI. | es_ES |
dc.description.references | Marcus, G., Rossi, F., & Veloso, M. (2016). Beyond the Turing test (special issue). AI Magazine, 37(1), 3–101. | es_ES |
dc.description.references | Marcus, G. (2020). The next decade in AI: Four steps towards robust artificial intelligence. arXiv:200206177. | es_ES |
dc.description.references | Marcus, G., Ross, F., & Veloso, M. (2015). Beyond the Turing test. AAAI workshop, http://www.math.unipd.it/~frossi/BeyondTuring2015/. | es_ES |
dc.description.references | Martinez-Plumed, F., & Hernandez-Orallo, J. (2018). Dual indicators to analyse AI benchmarks: Difficulty, discrimination, ability and generality. IEEE Transactions on Games, 12, 121–131. | es_ES |
dc.description.references | Martínez-Plumed, F., Prudêncio, R. B., Martínez-Usó, A., & Hernández-Orallo, J. (2019). Item response theory in AI: Analysing machine learning classifiers at the instance level. Artificial Intelligence, 271, 18–42. | es_ES |
dc.description.references | Martínez-Plumed, F., Gomez, E., & Hernández-Orallo, J. (2020). Tracking AI: The capability is (not) near. In European conference on artificial intelligence. | es_ES |
dc.description.references | Masum, H., Christensen, S., & Oppacher, F. (2002). The Turing ratio: Metrics for open-ended tasks. In Conf. on genetic and evolutionary computation (pp. 973–980). Morgan Kaufmann. | es_ES |
dc.description.references | McCarthy, J. (1983). Artificial intelligence needs more emphasis on basic research: President’s quarterly message. AI Magazine, 4(4), 5. | es_ES |
dc.description.references | McDermott, D. (2007). Level-headed. Artificial Intelligence, 171(18), 1183–1186. | es_ES |
dc.description.references | Mishra, A., Bhattacharyya, P., & Carl, M. (2013). Automatically predicting sentence translation difficulty. In ACL (pp 346–351). | es_ES |
dc.description.references | Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. UK: Penguin. | es_ES |
dc.description.references | Moor, J. (2003). The Turing test: the elusive standard of artificial intelligence (Vol. 30). New York: Springer Science & Business Media. | es_ES |
dc.description.references | Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., & Kiela, D. (2019). Adversarial nli: A new benchmark for natural language understanding. arXiv:191014599. | es_ES |
dc.description.references | Nilsson, N. J. (2006). Human-level artificial intelligence? Be serious!. AI Magazine, 26(4), 68. | es_ES |
dc.description.references | Oppy, G., & Dowe, D. L. (2011). The turing test. In: Zalta, E. N. (Ed.), Stanford encyclopedia of philosophy, Stanford University. http://plato.stanford.edu/entries/turing-test/. | es_ES |
dc.description.references | Preston, B. (1991). AI, anthropocentrism, and the evolution of ‘intelligence’. Minds and Machines, 1(3), 259–277. | es_ES |
dc.description.references | Proudfoot, D. (2011). Anthropomorphism and AI: Turing’s much misunderstood imitation game. Artificial Intelligence, 175(5), 950–957. | es_ES |
dc.description.references | Proudfoot, D. (2017). The Turing test-from every angle. In J. Bowen, M. Sprevak, R. Wilson, & B. J. Copeland (Eds.), The Turing Guide. Oxford: Oxford University Press. | es_ES |
dc.description.references | Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J. F., Breazeal, C., et al. (2019). Machine behaviour. Nature, 568(7753), 477–486. | es_ES |
dc.description.references | Rajalingham, R., Issa, E. B., Bashivan, P., Kar, K., Schmidt, K., & DiCarlo, J. J. (2018). Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience, 38(33), 7255–7269. | es_ES |
dc.description.references | Rajpurkar, P., Jia, R., & Liang, P. (2018). Know what you don’t know: Unanswerable questions for squad. arXiv:180603822. | es_ES |
dc.description.references | Rozen, O., Shwartz, V., Aharoni, R., & Dagan, I. (2019). Diversify your datasets: Analyzing generalization via controlled variance in adversarial datasets. In Proceedings of the 23rd conference on computational natural language learning (CoNLL), Association for Computational Linguistics, Hong Kong, China, pp. 196–205. | es_ES |
dc.description.references | Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. | es_ES |
dc.description.references | Sakaguchi, K., Bras, R. L., Bhagavatula, C., & Choi, Y. (2019). Winogrande: An adversarial winograd schema challenge at scale. arXiv:190710641. | es_ES |
dc.description.references | Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229. | es_ES |
dc.description.references | Saygin, A. P., Cicekli, I., & Akman, V. (2000). Turing test: 50 years later. Minds and Machines, 10(4), 463–518. | es_ES |
dc.description.references | Schlangen, D. (2019). Language tasks and language games: On methodology in current natural language processing research. arXiv:190810747. | es_ES |
dc.description.references | Schoenick, C., Clark, P., Tafjord, O., Turney, P., & Etzioni, O. (2017). Moving beyond the Turing test with the Allen AI science challenge. Communications of the ACM, 60(9), 60–64. | es_ES |
dc.description.references | Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham, R., Issa, E. B., Kar, K., Bashivan, P., Prescott-Roy, J., Schmidt, K., Yamins, D. L. K., & DiCarlo, J. J. (2018). Brain-score: Which artificial neural network for object recognition is most brain-like? bioRxiv preprint. | es_ES |
dc.description.references | Schweizer, P. (1998). The truly total Turing test. Minds and Machines, 8(2), 263–272. | es_ES |
dc.description.references | Sebeok, T. A., & Rosenthal, R. E. (1981). The clever Hans phenomenon: Communication with horses, whales, apes, and people. Annals of the NY Academy of Sciences, 364, 1–17. | es_ES |
dc.description.references | Seber, G. A. F., & Salehi, M. M. (2013). Adaptive cluster sampling. In Adaptive sampling designs (pp 11–26). New York: Springer. | es_ES |
dc.description.references | Settles, B. (2009). Active learning. Tech. rep., synthesis lectures on artificial intelligence and machine learning. Morgan & Claypool. | es_ES |
dc.description.references | Shah, H., & Warwick, K. (2015). Human or machine? Communications of the ACM, 58(4), 8. | es_ES |
dc.description.references | Shanahan, M. (2015). The technological singularity. New York: MIT Press. | es_ES |
dc.description.references | Shoham, Y. (2017). Towards the AI index. AI Magazine, 38(4), 71–77. | es_ES |
dc.description.references | Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017b). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359. | es_ES |
dc.description.references | Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel T, et al. (2017a). Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv:171201815. | es_ES |
dc.description.references | Sloman, A. (2014). Judging chatbots at Turing test. http://www.csbhamacuk/research/projects/cogaff/misc/turing-test-2014html. | es_ES |
dc.description.references | Stern, R., Sturtevant, N., Felner, A., Koenig, S, et al. (2019). Multi-agent pathfinding: Definitions, variants, and benchmarks. arXiv:190608291. | es_ES |
dc.description.references | Sturm, B. L. (2014). A simple method to determine if a music information retrieval system is a “horse”. IEEE Transactions on Multimedia, 16(6), 1636–1644. | es_ES |
dc.description.references | Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460. | es_ES |
dc.description.references | Turing, A. (1952). Can automatic calculating machines be said to think? BBC. BBC Third Programme, 14 and 23 Jan. 1952, between M. H. A. Newman, A. M. T., Sir Geoffrey Jefferson and R. B. Braithwaite. Reprinted in Copeland, B. J. (ed.) The essential Turing(pp. 494–495). Oxford: Oxford University Press. http://www.turingarchive.org/browse.php/B/6. | es_ES |
dc.description.references | Vale, C. D., & Weiss, D. J. (1975). A study of computer-administered stradaptive ability testing. Tech. rep., Minnesota Univ. Minneapolis Dept. of Psychology. | es_ES |
dc.description.references | Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes, T., & Tsang, J. (2017). Hybrid reward architecture for reinforcement learning. In NIPS (pp. 5392–5402). | es_ES |
dc.description.references | Vardi, M. Y. (2015). Human or machine? Response. Communications of the ACM, 58(4), 8–8. | es_ES |
dc.description.references | Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017). Starcraft ii: A new challenge for reinforcement learning. arXiv:170804782. | es_ES |
dc.description.references | von Ahn, L., Blum, M., & Langford, J. (2004). Telling humans and computers apart automatically. Communications of the ACM, 47(2), 56–60. | es_ES |
dc.description.references | von Ahn, L., Maurer, B., McMillen, C., Abraham, D., & Blum, M. (2008). RECAPTCHA: Human-based character recognition via web security measures. Science, 321(5895), 1465. | es_ES |
dc.description.references | Wainer, H. (2000). Computerized adaptive testing: A primer (2nd ed.). Mahwah, NJ: Lawrence Erlabaum Associate Publishers. | es_ES |
dc.description.references | Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). Superglue: A stickier benchmark for general-purpose language understanding systems. arXiv:190500537. | es_ES |
dc.description.references | Watt, S. (1996). Naive psychology and the inverted Turing test. Psycoloquy, 7(14), 463–518. | es_ES |
dc.description.references | Weiss, D. J. (2011). Better data from better measurements using computerized adaptive testing. Journal of Methods and Measurement in the Social Sciences, 2(1), 1–27. | es_ES |
dc.description.references | You, J. (2015). Beyond the Turing test. Science, 347(6218), 116–116. | es_ES |
dc.description.references | Youyou, W., Kosinski, M., & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036–1040. | es_ES |
dc.description.references | Zadeh, L. A. (2008). Toward human level machine intelligence-Is it achievable? The need for a paradigm shift. IEEE Computational Intelligence Magazine, 3(3), 11–22. | es_ES |
dc.description.references | Zellers, R., Bisk, Y., Schwartz, R., & Choi, Y. (2018). Swag: A large-scale adversarial dataset for grounded commonsense inference. In Proceedings of the 2018 conference on empirical methods in natural language processing (EMNLP). | es_ES |
dc.description.references | Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., & Choi, Y. (2019). Hellaswag: Can a machine really finish your sentence? arXiv:190507830. | es_ES |
dc.description.references | Zhou, P., Khanna, R., Lin, B. Y., Ho, D., Ren, X., & Pujara, J. (2020). Can BERT reason? logically equivalent probes for evaluating the inference capabilities of language models. arXiv:200500782. | es_ES |
dc.description.references | Zillich, M. (2012). My robot is smarter than your robot. on the need for a total Turing test for robots. In: V. Muller & A. Ayesh (Eds.), AISB/IACAP 2012 symposium “revisiting turing and his test”, The Society for the Study of Artificial Intelligence and the Simulation of Behaviour, pp. 12–15. | es_ES |