- -

Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morales-Gonzalez, Maria es_ES
dc.contributor.author Arévalo-Alquichire, Said es_ES
dc.contributor.author Diaz, Luis E. es_ES
dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Vilariño, Guillermo es_ES
dc.contributor.author Gómez-Tejedor, José-Antonio es_ES
dc.contributor.author Valero, Manuel F. es_ES
dc.date.accessioned 2021-09-14T03:33:48Z
dc.date.available 2021-09-14T03:33:48Z
dc.date.issued 2020-12-14 es_ES
dc.identifier.issn 0884-2914 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172319
dc.description.abstract [EN] Interactions between smooth muscle cells (SMCs) and biomaterials must not result in phenotype changes as this may generate uncontrolled multiplication processes and occlusions in vascular grafts. The aim of this study was to relate the hydrolytic stability and biocompatibility of polyurethanes (PUs) on SMCs. A higher polycaprolactone (PCL) concentration was found to improve the hydrolytic stability of the material and the adhesion of SMCs. A material with 5% polyethylene glycol, 90% PCL, and 5% pentaerythritol presented high cell viability and adhesion, suggesting a contractile phenotype in SMCs depending on the morphology. Nevertheless, all PUs retained their elastic modulus over 120 days, similar to the collagen of native arteries (similar to 10 MPa). Furthermore, aortic SMCs did not present toxicity (viability over 80%) and demonstrated adherence without any abnormal cell multiplication processes, which is ideal for the function to be fulfiled in situ in the vascular grafts. es_ES
dc.description.sponsorship The research and publication were supported by the Universidad de La Sabana (ING-205-2018) and the Minister of Science, Technology, and Innovation of the Republic of Colombia, MINCIENCAS (Contract number 80740-186-2019). M. M-G. would like to thank the Universidad de La Sabana for the scholarship for her master's studies. S. A-A. would like to thank MINCIENCIAS for the doctoral training scholarship (Grant 727-2015). The authors are thankful to Professor Ericsson Coy Barrera and his staff at Nueva Granada Military University for the access to the VarioskanT LUX multimode microplate reader. J. A. S. acknowledges the financial support by MINECO through FIS2017-83295-P, MAT2015-71070-REDC, MAT2016-75586-C4-1/2/3-P and the Ramon y Cajal Fellowship (RYC-201517482). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press (Materials Research Society) es_ES
dc.relation.ispartof Journal of Materials Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hydrolytic stability es_ES
dc.subject Biocompatibility es_ES
dc.subject Polyurethan es_ES
dc.subject Polyethylene glycol-polycaprolactone es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1557/jmr.2020.303 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad de La Sabana//ING-202-2018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Minciencias//80740-186-2019/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Minciencias//727-2015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Morales-Gonzalez, M.; Arévalo-Alquichire, S.; Diaz, LE.; Sans-Tresserras, JÁ.; Vilariño, G.; Gómez-Tejedor, J.; Valero, MF. (2020). Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol-polycaprolactone-based polyurethanes. Journal of Materials Research. 35(23-24):3276-3285. https://doi.org/10.1557/jmr.2020.303 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1557/jmr.2020.303 es_ES
dc.description.upvformatpinicio 3276 es_ES
dc.description.upvformatpfin 3285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 23-24 es_ES
dc.relation.pasarela S\421783 es_ES
dc.contributor.funder Universidad de La Sabana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación, Colombia es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Benrashid, E., McCoy, C. C., Youngwirth, L. M., Kim, J., Manson, R. J., Otto, J. C., & Lawson, J. H. (2016). Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application. Methods, 99, 13-19. doi:10.1016/j.ymeth.2015.07.014 es_ES
dc.description.references Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M., & Ghanbari, H. (2018). In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts. Biomedical Materials, 13(3), 035007. doi:10.1088/1748-605x/aaa8b6 es_ES
dc.description.references Niu, Y., Chen, K. C., He, T., Yu, W., Huang, S., & Xu, K. (2014). Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials, 35(14), 4266-4277. doi:10.1016/j.biomaterials.2014.02.013 es_ES
dc.description.references Kupka, V., Vojtova, L., Fohlerova, Z., & Jancar, J. (2016). Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene glycol) and poly(caprolactone). Express Polymer Letters, 10(6), 479-492. doi:10.3144/expresspolymlett.2016.46 es_ES
dc.description.references Arévalo-Alquichire, S., Morales-Gonzalez, M., Navas-Gómez, K., Diaz, L. E., Gómez-Tejedor, J. A., Serrano, M.-A., & Valero, M. F. (2020). Influence of Polyol/Crosslinker Blend Composition on Phase Separation and Thermo-Mechanical Properties of Polyurethane Thin Films. Polymers, 12(3), 666. doi:10.3390/polym12030666 es_ES
dc.description.references Wu, J., Hu, C., Tang, Z., Yu, Q., Liu, X., & Chen, H. (2018). Tissue-engineered Vascular Grafts: Balance of the Four Major Requirements. Colloid and Interface Science Communications, 23, 34-44. doi:10.1016/j.colcom.2018.01.005 es_ES
dc.description.references Wolf, F., Vogt, F., Schmitz-Rode, T., Jockenhoevel, S., & Mela, P. (2016). Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discovery Today, 21(9), 1446-1455. doi:10.1016/j.drudis.2016.04.017 es_ES
dc.description.references Kotula, A. P., Snyder, C. R., & Migler, K. B. (2017). Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 117, 1-10. doi:10.1016/j.polymer.2017.04.006 es_ES
dc.description.references Cunha, F. O. V. da, Melo, D. H. R., Veronese, V. B., & Forte, M. M. C. (2004). Study of castor oil polyurethane - poly(methyl methacrylate) semi-interpenetrating polymer network (SIPN) reaction parameters using a 2³ factorial experimental design. Materials Research, 7(4), 539-543. doi:10.1590/s1516-14392004000400006 es_ES
dc.description.references 33. Chang, H.-I. and Wang, Y. : Cell response to surface and architecture of tissue engineering scaffolds. Regen. Med. Tissue Eng. – Cells Biomater. (2012), pp. 569–588. es_ES
dc.description.references Chen, H., & Kassab, G. S. (2016). Microstructure-based biomechanics of coronary arteries in health and disease. Journal of Biomechanics, 49(12), 2548-2559. doi:10.1016/j.jbiomech.2016.03.023 es_ES
dc.description.references Zhou, C., Zhou, X., & Su, X. (2017). Noncytotoxic polycaprolactone-polyethyleneglycol-ε-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Advances, 7(63), 39718-39725. doi:10.1039/c7ra07102g es_ES
dc.description.references Tijore, A., Behr, J.-M., Irvine, S. A., Baisane, V., & Venkatraman, S. (2018). Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomedical Microdevices, 20(2). doi:10.1007/s10544-018-0274-8 es_ES
dc.description.references Jing, X., Mi, H.-Y., Salick, M. R., Cordie, T., McNulty, J., Peng, X.-F., & Turng, L.-S. (2015). In vitro evaluations of electrospun nanofiber scaffolds composed of poly(ɛ-caprolactone) and polyethylenimine. Journal of Materials Research, 30(11), 1808-1819. doi:10.1557/jmr.2015.117 es_ES
dc.description.references Hou, Z., Xu, J., Teng, J., Jia, Q., & Wang, X. (2020). Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. Materials Science and Engineering: C, 109, 110571. doi:10.1016/j.msec.2019.110571 es_ES
dc.description.references Agrawal, A., Lee, B. H., Irvine, S. A., An, J., Bhuthalingam, R., Singh, V., … Venkatraman, S. S. (2015). Smooth Muscle Cell Alignment and Phenotype Control by Melt Spun Polycaprolactone Fibers for Seeding of Tissue Engineered Blood Vessels. International Journal of Biomaterials, 2015, 1-8. doi:10.1155/2015/434876 es_ES
dc.description.references Tiwari, A. P., Joshi, M. K., Lee, J., Maharjan, B., Ko, S. W., Park, C. H., & Kim, C. S. (2017). Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 105-113. doi:10.1016/j.colsurfa.2017.01.054 es_ES
dc.description.references Yuan, Y., & Lee, T. R. (2013). Contact Angle and Wetting Properties. Springer Series in Surface Sciences, 3-34. doi:10.1007/978-3-642-34243-1_1 es_ES
dc.description.references Chung, Y.-C., Cho, T. K., & Chun, B. C. (2009). Flexible cross-linking by both pentaerythritol and polyethyleneglycol spacer and its impact on the mechanical properties and the shape memory effects of polyurethane. Journal of Applied Polymer Science, 112(5), 2800-2808. doi:10.1002/app.29538 es_ES
dc.description.references Mi, H.-Y., Jing, X., Hagerty, B. S., Chen, G., Huang, A., & Turng, L.-S. (2017). Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Materials & Design, 127, 106-114. doi:10.1016/j.matdes.2017.04.056 es_ES
dc.description.references Lyu, S., & Untereker, D. (2009). Degradability of Polymers for Implantable Biomedical Devices. International Journal of Molecular Sciences, 10(9), 4033-4065. doi:10.3390/ijms10094033 es_ES
dc.description.references Krsko, P., & Libera, M. (2005). Biointeractive hydrogels. Materials Today, 8(12), 36-44. doi:10.1016/s1369-7021(05)71223-2 es_ES
dc.description.references Huxley, V. H., & Kemp, S. S. (2018). Sex-Specific Characteristics of the Microcirculation. Sex-Specific Analysis of Cardiovascular Function, 307-328. doi:10.1007/978-3-319-77932-4_20 es_ES
dc.description.references Wesełucha-Birczyńska, A., Świętek, M., Sołtysiak, E., Galiński, P., Płachta, Ł., Piekara, K., & Błażewicz, M. (2015). Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. The Analyst, 140(7), 2311-2320. doi:10.1039/c4an02284j es_ES
dc.description.references Blit, P. H., Battiston, K. G., Yang, M., Paul Santerre, J., & Woodhouse, K. A. (2012). Electrospun elastin-like polypeptide enriched polyurethanes and their interactions with vascular smooth muscle cells. Acta Biomaterialia, 8(7), 2493-2503. doi:10.1016/j.actbio.2012.03.032 es_ES
dc.description.references Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85-96. doi:10.1016/s0142-9612(03)00476-9 es_ES
dc.description.references Le, X., Poinern, G. E. J., Ali, N., Berry, C. M., & Fawcett, D. (2013). Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response. International Journal of Biomaterials, 2013, 1-16. doi:10.1155/2013/782549 es_ES
dc.description.references Chen, L., Yan, C., & Zheng, Z. (2018). Functional polymer surfaces for controlling cell behaviors. Materials Today, 21(1), 38-59. doi:10.1016/j.mattod.2017.07.002 es_ES
dc.description.references França de Sá, S., Ferreira, J. L., Matos, A. S., Macedo, R., & Ramos, A. M. (2016). A new insight into polyurethane foam deterioration - the use of Raman microscopy for the evaluation of long-term storage conditions. Journal of Raman Spectroscopy, 47(12), 1494-1504. doi:10.1002/jrs.4984 es_ES
dc.description.references Xie, F., Zhang, T., Bryant, P., Kurusingal, V., Colwell, J. M., & Laycock, B. (2019). Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 90, 211-268. doi:10.1016/j.progpolymsci.2018.12.003 es_ES
dc.description.references Uscátegui, Y. L., Arévalo-Alquichire, S. J., Gómez-Tejedor, J. A., Vallés-Lluch, A., Díaz, L. E., & Valero, M. F. (2017). Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. Journal of Materials Research, 32(19), 3699-3711. doi:10.1557/jmr.2017.371 es_ES
dc.description.references Horakova, J., Mikes, P., Saman, A., Jencova, V., Klapstova, A., Svarcova, T., … Lukas, D. (2018). The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Materials Science and Engineering: C, 92, 132-142. doi:10.1016/j.msec.2018.06.041 es_ES
dc.description.references Liu, X., Xia, Y., Liu, L., Zhang, D., & Hou, Z. (2018). Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. Journal of Biomaterials Applications, 32(10), 1329-1342. doi:10.1177/0885328218763912 es_ES
dc.description.references Uscátegui, Y., Díaz, L., Gómez-Tejedor, J., Vallés-Lluch, A., Vilariño-Feltrer, G., Serrano, M., & Valero, M. (2019). Candidate Polyurethanes Based on Castor Oil (Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Applications. Molecules, 24(2), 237. doi:10.3390/molecules24020237 es_ES
dc.description.references Adipurnama, I., Yang, M.-C., Ciach, T., & Butruk-Raszeja, B. (2017). Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomaterials Science, 5(1), 22-37. doi:10.1039/c6bm00618c es_ES
dc.description.references Peng, Z., Zhou, P., Zhang, F., & Peng, X. (2018). Preparation and Properties of Polyurethane Hydrogels Based on Hexamethylene Diisocyanate/Polycaprolactone-Polyethylene Glycol. Journal of Macromolecular Science, Part B, 57(3), 187-195. doi:10.1080/00222348.2018.1439223 es_ES
dc.description.references Baranowska-Korczyc, A., Warowicka, A., Jasiurkowska-Delaporte, M., Grześkowiak, B., Jarek, M., Maciejewska, B. M., … Jurga, S. (2016). Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth. RSC Advances, 6(24), 19647-19656. doi:10.1039/c6ra02486f es_ES
dc.description.references Zehnder, T., Freund, T., Demir, M., Detsch, R., & Boccaccini, A. (2016). Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering. Materials, 9(11), 887. doi:10.3390/ma9110887 es_ES
dc.description.references Hoque, M. E., San, W. Y., Wei, F., Li, S., Huang, M.-H., Vert, M., & Hutmacher, D. W. (2009). Processing of Polycaprolactone and Polycaprolactone-Based Copolymers into 3D Scaffolds, and Their Cellular Responses. Tissue Engineering Part A, 15(10), 3013-3024. doi:10.1089/ten.tea.2008.0355 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem