Mostrar el registro sencillo del ítem
dc.contributor.author | Carbonell Alcaina, Carlos | es_ES |
dc.contributor.author | Soler-Cabezas, José Luis | es_ES |
dc.contributor.author | Bes-Piá, M.A. | es_ES |
dc.contributor.author | Vincent Vela, Maria Cinta | es_ES |
dc.contributor.author | Mendoza Roca, José Antonio | es_ES |
dc.contributor.author | Pastor-Alcañiz, Laura | es_ES |
dc.contributor.author | Alvarez Blanco, Silvia | es_ES |
dc.date.accessioned | 2021-09-14T03:33:50Z | |
dc.date.available | 2021-09-14T03:33:50Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/172320 | |
dc.description.abstract | [EN] Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC. | es_ES |
dc.description.sponsorship | This research was funded by CDTI (Centre for Industrial and Technological Development) depending on the Spanish Ministry of Science and Innovation through the INNPRONTA program, grant number IPT-20111020. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Membranes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Wastewater reuse | es_ES |
dc.subject | Table olive fermentation brine | es_ES |
dc.subject | Digester centrate | es_ES |
dc.subject | Forward osmosis | es_ES |
dc.subject | Nanofiltration | es_ES |
dc.subject | Ultrafiltration | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/membranes10100253 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IPT-20111020/ES/ITACA: INVESTIGACIÓN DE TECNOLOGÍAS DE TRATAMIENTO, REUTILIZACIÓN Y CONTROL PARA LA SOSTENIBILIDAD FUTURA DE LA DEPURACIÓN DE AGUAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Carbonell Alcaina, C.; Soler-Cabezas, JL.; Bes-Piá, M.; Vincent Vela, MC.; Mendoza Roca, JA.; Pastor-Alcañiz, L.; Alvarez Blanco, S. (2020). Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate. Membranes. 10(10):1-14. https://doi.org/10.3390/membranes10100253 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/membranes10100253 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 10 | es_ES |
dc.identifier.eissn | 2077-0375 | es_ES |
dc.identifier.pmid | 32987759 | es_ES |
dc.identifier.pmcid | PMC7598636 | es_ES |
dc.relation.pasarela | S\418876 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | DEPURACION DE AGUAS DEL MEDITERRANEO, S.L. | es_ES |
dc.description.references | Abou-Elela, S. I., Kamel, M. M., & Fawzy, M. E. (2010). Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination, 250(1), 1-5. doi:10.1016/j.desal.2009.03.022 | es_ES |
dc.description.references | Ferrer-Polonio, E., Iborra-Clar, A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2014). Fermentation brines from Spanish style green table olives processing: treatment alternatives before recycling or recovery operations. Journal of Chemical Technology & Biotechnology, 91(1), 131-137. doi:10.1002/jctb.4550 | es_ES |
dc.description.references | Reid, E., Liu, X., & Judd, S. J. (2006). Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. Journal of Membrane Science, 283(1-2), 164-171. doi:10.1016/j.memsci.2006.06.021 | es_ES |
dc.description.references | Ferrer-Polonio, E., Mendoza-Roca, J. A., Iborra-Clar, A., Alonso-Molina, J. ., & Pastor-Alcañiz, L. (2015). Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chemical Engineering Journal, 273, 595-602. doi:10.1016/j.cej.2015.03.062 | es_ES |
dc.description.references | Li, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184, 109658. doi:10.1016/j.ecoenv.2019.109658 | es_ES |
dc.description.references | Ayed, L., Asses, N., Chammem, N., Ben Othman, N., & Hamdi, M. (2017). Advanced oxidation process and biological treatments for table olive processing wastewaters: constraints and a novel approach to integrated recycling process: a review. Biodegradation, 28(2-3), 125-138. doi:10.1007/s10532-017-9782-0 | es_ES |
dc.description.references | Ferrer-Polonio, E., Mendoza-Roca, J. A., Iborra-Clar, A., & Pastor-Alcañiz, L. (2015). Adsorption of raw and treated by membranes fermentation brines from table olives processing for phenolic compounds separation and recovery. Journal of Chemical Technology & Biotechnology, 91(7), 2094-2102. doi:10.1002/jctb.4807 | es_ES |
dc.description.references | El-Abbassi, A., Kiai, H., Raiti, J., & Hafidi, A. (2014). Application of ultrafiltration for olive processing wastewaters treatment. Journal of Cleaner Production, 65, 432-438. doi:10.1016/j.jclepro.2013.08.016 | es_ES |
dc.description.references | Carbonell-Alcaina, C., Álvarez-Blanco, S., Bes-Piá, M. A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2018). Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. Journal of Cleaner Production, 189, 662-672. doi:10.1016/j.jclepro.2018.04.127 | es_ES |
dc.description.references | Kiai, H., García-Payo, M. C., Hafidi, A., & Khayet, M. (2014). Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chemical Engineering and Processing: Process Intensification, 86, 153-161. doi:10.1016/j.cep.2014.09.007 | es_ES |
dc.description.references | Vu, M. T., Ansari, A. J., Hai, F. I., & Nghiem, L. D. (2018). Performance of a seawater-driven forward osmosis process for pre-concentrating digested sludge centrate: organic enrichment and membrane fouling. Environmental Science: Water Research & Technology, 4(7), 1047-1056. doi:10.1039/c8ew00132d | es_ES |
dc.description.references | Soler-Cabezas, J. L., Mendoza-Roca, J. A., Vincent-Vela, M. C., Luján-Facundo, M. J., & Pastor-Alcañiz, L. (2018). Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Separation and Purification Technology, 193, 289-296. doi:10.1016/j.seppur.2017.10.058 | es_ES |
dc.description.references | Duan, J., Litwiller, E., Choi, S.-H., & Pinnau, I. (2014). Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration. Journal of Membrane Science, 453, 463-470. doi:10.1016/j.memsci.2013.11.029 | es_ES |
dc.description.references | Hu, B., Jiang, M., Zhao, S., Ji, X., Shu, Q., Tian, B., … Zhang, L. (2019). Biogas slurry as draw solution of forward osmosis process to extract clean water from micro-polluted water for hydroponic cultivation. Journal of Membrane Science, 576, 88-95. doi:10.1016/j.memsci.2019.01.029 | es_ES |
dc.description.references | Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 | es_ES |
dc.description.references | De Castro, A., & Brenes, M. (2001). Fermentation of washing waters of Spanish-style green olive processing. Process Biochemistry, 36(8-9), 797-802. doi:10.1016/s0032-9592(00)00280-6 | es_ES |
dc.description.references | Luján-Facundo, M. J., Mendoza-Roca, J. A., Soler-Cabezas, J. L., Bes-Piá, A., Vincent-Vela, M. C., & Pastor-Alcañiz, L. (2019). Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Safety and Environmental Protection, 131, 292-299. doi:10.1016/j.psep.2019.09.024 | es_ES |
dc.description.references | Ferrer-Polonio, E., Carbonell-Alcaina, C., Mendoza-Roca, J. A., Iborra-Clar, A., Álvarez-Blanco, S., Bes-Piá, A., & Pastor-Alcañiz, L. (2017). Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production, 142, 1377-1386. doi:10.1016/j.jclepro.2016.11.169 | es_ES |
dc.description.references | Papadaki, E., & Mantzouridou, F. T. (2016). Current status and future challenges of table olive processing wastewater valorization. Biochemical Engineering Journal, 112, 103-113. doi:10.1016/j.bej.2016.04.008 | es_ES |
dc.description.references | Carbonell-Alcaina, C., Corbatón-Báguena, M.-J., Álvarez-Blanco, S., Bes-Piá, M. A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2016). Determination of fouling mechanisms in polymeric ultrafiltration membranes using residual brines from table olive storage wastewaters as feed. Journal of Food Engineering, 187, 14-23. doi:10.1016/j.jfoodeng.2016.04.016 | es_ES |
dc.description.references | Sayadi, S., Allouche, N., Jaoua, M., & Aloui, F. (2000). Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochemistry, 35(7), 725-735. doi:10.1016/s0032-9592(99)00134-x | es_ES |
dc.description.references | Li, Y., Xu, Z., Xie, M., Zhang, B., Li, G., & Luo, W. (2020). Resource recovery from digested manure centrate: Comparison between conventional and aquaporin thin-film composite forward osmosis membranes. Journal of Membrane Science, 593, 117436. doi:10.1016/j.memsci.2019.117436 | es_ES |
dc.description.references | Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., & Boom, R. M. (2005). Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 247(1-2), 11-20. doi:10.1016/j.memsci.2004.05.022 | es_ES |
dc.description.references | Koyuncu, I., Topacik, D., & Wiesner, M. R. (2004). Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Research, 38(2), 432-440. doi:10.1016/j.watres.2003.10.001 | es_ES |
dc.description.references | Virga, E., Spruijt, E., de Vos, W. M., & Biesheuvel, P. M. (2018). Wettability of Amphoteric Surfaces: The Effect of pH and Ionic Strength on Surface Ionization and Wetting. Langmuir, 34(50), 15174-15180. doi:10.1021/acs.langmuir.8b02875 | es_ES |
dc.description.references | Van der Bruggen, B., Cornelis, G., Vandecasteele, C., & Devreese, I. (2005). Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination, 175(1), 111-119. doi:10.1016/j.desal.2004.09.025 | es_ES |
dc.description.references | Spiegler, K. S., & Kedem, O. (1966). Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination, 1(4), 311-326. doi:10.1016/s0011-9164(00)80018-1 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |