- -

Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carbonell Alcaina, Carlos es_ES
dc.contributor.author Soler-Cabezas, José Luis es_ES
dc.contributor.author Bes-Piá, M.A. es_ES
dc.contributor.author Vincent Vela, Maria Cinta es_ES
dc.contributor.author Mendoza Roca, José Antonio es_ES
dc.contributor.author Pastor-Alcañiz, Laura es_ES
dc.contributor.author Alvarez Blanco, Silvia es_ES
dc.date.accessioned 2021-09-14T03:33:50Z
dc.date.available 2021-09-14T03:33:50Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172320
dc.description.abstract [EN] Management of wastewater is a major challenge nowadays, due to increasing water demand, growing population and more stringent regulations on water quality. Wastewaters from food conservation are especially difficult to treat, since they have high salinity and high organic matter concentration. The aim of this work is the treatment of the effluent from a table olive fermentation process (FTOP) with the aim of reusing it once the organic matter is separated. The process proposed in this work consists of the following membrane-based technologies: Ultrafiltration (UF) (UP005, Microdyn Nadir), Forward Osmosis (FO) (Osmen2521, Hydration Technology Innovation) and Nanofiltration (NF) (NF245, Dow). The FO process was implemented to reduce the salinity entering the NF process, using the FTOP as draw solution and, at the same time, to concentrate the centrate produced in the sludge treatment of a municipal wastewater treatment plant with the aim of obtaining a stream enriched in nutrients. The UF step achieved the elimination of 50% of the chemical oxygen demand of the FTOP. The UF permeate was pumped to the FO system reducing the volume of the anaerobically digested sludge centrate (ADSC) by a factor of 3 in 6.5 h. Finally, the ultrafiltrated FTOP diluted by FO was subjected to NF. The transmembrane pressure needed in the NF stage was 40% lower than that required if the ultrafiltration permeate was directly nanofiltered. By means of the integrated process, the concentration of organic matter and phenolic compounds in the FTOP decreased by 97%. Therefore, the proposed process was able to obtain a treated brine that could be reused in other processes and simultaneously to concentrate a stream, such as the ADSC. es_ES
dc.description.sponsorship This research was funded by CDTI (Centre for Industrial and Technological Development) depending on the Spanish Ministry of Science and Innovation through the INNPRONTA program, grant number IPT-20111020. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Membranes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wastewater reuse es_ES
dc.subject Table olive fermentation brine es_ES
dc.subject Digester centrate es_ES
dc.subject Forward osmosis es_ES
dc.subject Nanofiltration es_ES
dc.subject Ultrafiltration es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/membranes10100253 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-20111020/ES/ITACA: INVESTIGACIÓN DE TECNOLOGÍAS DE TRATAMIENTO, REUTILIZACIÓN Y CONTROL PARA LA SOSTENIBILIDAD FUTURA DE LA DEPURACIÓN DE AGUAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Carbonell Alcaina, C.; Soler-Cabezas, JL.; Bes-Piá, M.; Vincent Vela, MC.; Mendoza Roca, JA.; Pastor-Alcañiz, L.; Alvarez Blanco, S. (2020). Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate. Membranes. 10(10):1-14. https://doi.org/10.3390/membranes10100253 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/membranes10100253 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2077-0375 es_ES
dc.identifier.pmid 32987759 es_ES
dc.identifier.pmcid PMC7598636 es_ES
dc.relation.pasarela S\418876 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder DEPURACION DE AGUAS DEL MEDITERRANEO, S.L. es_ES
dc.description.references Abou-Elela, S. I., Kamel, M. M., & Fawzy, M. E. (2010). Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination, 250(1), 1-5. doi:10.1016/j.desal.2009.03.022 es_ES
dc.description.references Ferrer-Polonio, E., Iborra-Clar, A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2014). Fermentation brines from Spanish style green table olives processing: treatment alternatives before recycling or recovery operations. Journal of Chemical Technology & Biotechnology, 91(1), 131-137. doi:10.1002/jctb.4550 es_ES
dc.description.references Reid, E., Liu, X., & Judd, S. J. (2006). Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. Journal of Membrane Science, 283(1-2), 164-171. doi:10.1016/j.memsci.2006.06.021 es_ES
dc.description.references Ferrer-Polonio, E., Mendoza-Roca, J. A., Iborra-Clar, A., Alonso-Molina, J. ., & Pastor-Alcañiz, L. (2015). Comparison of two strategies for the start-up of a biological reactor for the treatment of hypersaline effluents from a table olive packaging industry. Chemical Engineering Journal, 273, 595-602. doi:10.1016/j.cej.2015.03.062 es_ES
dc.description.references Li, H., Meng, F., Duan, W., Lin, Y., & Zheng, Y. (2019). Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety, 184, 109658. doi:10.1016/j.ecoenv.2019.109658 es_ES
dc.description.references Ayed, L., Asses, N., Chammem, N., Ben Othman, N., & Hamdi, M. (2017). Advanced oxidation process and biological treatments for table olive processing wastewaters: constraints and a novel approach to integrated recycling process: a review. Biodegradation, 28(2-3), 125-138. doi:10.1007/s10532-017-9782-0 es_ES
dc.description.references Ferrer-Polonio, E., Mendoza-Roca, J. A., Iborra-Clar, A., & Pastor-Alcañiz, L. (2015). Adsorption of raw and treated by membranes fermentation brines from table olives processing for phenolic compounds separation and recovery. Journal of Chemical Technology & Biotechnology, 91(7), 2094-2102. doi:10.1002/jctb.4807 es_ES
dc.description.references El-Abbassi, A., Kiai, H., Raiti, J., & Hafidi, A. (2014). Application of ultrafiltration for olive processing wastewaters treatment. Journal of Cleaner Production, 65, 432-438. doi:10.1016/j.jclepro.2013.08.016 es_ES
dc.description.references Carbonell-Alcaina, C., Álvarez-Blanco, S., Bes-Piá, M. A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2018). Ultrafiltration of residual fermentation brines from the production of table olives at different operating conditions. Journal of Cleaner Production, 189, 662-672. doi:10.1016/j.jclepro.2018.04.127 es_ES
dc.description.references Kiai, H., García-Payo, M. C., Hafidi, A., & Khayet, M. (2014). Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chemical Engineering and Processing: Process Intensification, 86, 153-161. doi:10.1016/j.cep.2014.09.007 es_ES
dc.description.references Vu, M. T., Ansari, A. J., Hai, F. I., & Nghiem, L. D. (2018). Performance of a seawater-driven forward osmosis process for pre-concentrating digested sludge centrate: organic enrichment and membrane fouling. Environmental Science: Water Research & Technology, 4(7), 1047-1056. doi:10.1039/c8ew00132d es_ES
dc.description.references Soler-Cabezas, J. L., Mendoza-Roca, J. A., Vincent-Vela, M. C., Luján-Facundo, M. J., & Pastor-Alcañiz, L. (2018). Simultaneous concentration of nutrients from anaerobically digested sludge centrate and pre-treatment of industrial effluents by forward osmosis. Separation and Purification Technology, 193, 289-296. doi:10.1016/j.seppur.2017.10.058 es_ES
dc.description.references Duan, J., Litwiller, E., Choi, S.-H., & Pinnau, I. (2014). Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration. Journal of Membrane Science, 453, 463-470. doi:10.1016/j.memsci.2013.11.029 es_ES
dc.description.references Hu, B., Jiang, M., Zhao, S., Ji, X., Shu, Q., Tian, B., … Zhang, L. (2019). Biogas slurry as draw solution of forward osmosis process to extract clean water from micro-polluted water for hydroponic cultivation. Journal of Membrane Science, 576, 88-95. doi:10.1016/j.memsci.2019.01.029 es_ES
dc.description.references Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 152-178. doi:10.1016/s0076-6879(99)99017-1 es_ES
dc.description.references De Castro, A., & Brenes, M. (2001). Fermentation of washing waters of Spanish-style green olive processing. Process Biochemistry, 36(8-9), 797-802. doi:10.1016/s0032-9592(00)00280-6 es_ES
dc.description.references Luján-Facundo, M. J., Mendoza-Roca, J. A., Soler-Cabezas, J. L., Bes-Piá, A., Vincent-Vela, M. C., & Pastor-Alcañiz, L. (2019). Use of the osmotic membrane bioreactor for the management of tannery wastewater using absorption liquid waste as draw solution. Process Safety and Environmental Protection, 131, 292-299. doi:10.1016/j.psep.2019.09.024 es_ES
dc.description.references Ferrer-Polonio, E., Carbonell-Alcaina, C., Mendoza-Roca, J. A., Iborra-Clar, A., Álvarez-Blanco, S., Bes-Piá, A., & Pastor-Alcañiz, L. (2017). Brine recovery from hypersaline wastewaters from table olive processing by combination of biological treatment and membrane technologies. Journal of Cleaner Production, 142, 1377-1386. doi:10.1016/j.jclepro.2016.11.169 es_ES
dc.description.references Papadaki, E., & Mantzouridou, F. T. (2016). Current status and future challenges of table olive processing wastewater valorization. Biochemical Engineering Journal, 112, 103-113. doi:10.1016/j.bej.2016.04.008 es_ES
dc.description.references Carbonell-Alcaina, C., Corbatón-Báguena, M.-J., Álvarez-Blanco, S., Bes-Piá, M. A., Mendoza-Roca, J. A., & Pastor-Alcañiz, L. (2016). Determination of fouling mechanisms in polymeric ultrafiltration membranes using residual brines from table olive storage wastewaters as feed. Journal of Food Engineering, 187, 14-23. doi:10.1016/j.jfoodeng.2016.04.016 es_ES
dc.description.references Sayadi, S., Allouche, N., Jaoua, M., & Aloui, F. (2000). Detrimental effects of high molecular-mass polyphenols on olive mill wastewater biotreatment. Process Biochemistry, 35(7), 725-735. doi:10.1016/s0032-9592(99)00134-x es_ES
dc.description.references Li, Y., Xu, Z., Xie, M., Zhang, B., Li, G., & Luo, W. (2020). Resource recovery from digested manure centrate: Comparison between conventional and aquaporin thin-film composite forward osmosis membranes. Journal of Membrane Science, 593, 117436. doi:10.1016/j.memsci.2019.117436 es_ES
dc.description.references Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., & Boom, R. M. (2005). Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 247(1-2), 11-20. doi:10.1016/j.memsci.2004.05.022 es_ES
dc.description.references Koyuncu, I., Topacik, D., & Wiesner, M. R. (2004). Factors influencing flux decline during nanofiltration of solutions containing dyes and salts. Water Research, 38(2), 432-440. doi:10.1016/j.watres.2003.10.001 es_ES
dc.description.references Virga, E., Spruijt, E., de Vos, W. M., & Biesheuvel, P. M. (2018). Wettability of Amphoteric Surfaces: The Effect of pH and Ionic Strength on Surface Ionization and Wetting. Langmuir, 34(50), 15174-15180. doi:10.1021/acs.langmuir.8b02875 es_ES
dc.description.references Van der Bruggen, B., Cornelis, G., Vandecasteele, C., & Devreese, I. (2005). Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination, 175(1), 111-119. doi:10.1016/j.desal.2004.09.025 es_ES
dc.description.references Spiegler, K. S., & Kedem, O. (1966). Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination, 1(4), 311-326. doi:10.1016/s0011-9164(00)80018-1 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem