- -

Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Castelló, David es_ES
dc.contributor.author García-Segura, Tatiana es_ES
dc.contributor.author Montalbán-Domingo, Laura es_ES
dc.contributor.author Sanz-Benlloch, María Amalia es_ES
dc.contributor.author Pellicer, Eugenio es_ES
dc.date.accessioned 2021-09-15T03:30:35Z
dc.date.available 2021-09-15T03:30:35Z
dc.date.issued 2020-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172514
dc.description.abstract [EN] Various studies have been recently conducted to predict pavement condition, but most of them were developed in a certain region where climate conditions were kept constant and/or the research focused on specific road distresses using single parameters. Thus, this research aimed at determining the influence of pavement structure, traffic demand, and climate factors on urban flexible pavement condition over time. To do this, the Structural Number was used as an indicator of the pavement capacity, various traffic and climate variables were defined, and the Pavement Condition Index was used as a surrogate measure of pavement condition. The analysis was focused on the calibration of regression models by using the K-Fold Cross Validation technique. As a result, for a given pavement age, pavement condition worsens as the Equivalent Single Axle Load and the Annual Average Height of Snow increased. Likewise, a cold Annual Average Temperature (5¿15 °C) and a large Annual Average Range of Temperature (20¿30 °C) encourage a more aggressive pavement deterioration process. By contrast, warm climates with low temperature variations, which are associated with low precipitation, lead to a longer pavement service life. Additionally, a new classification of climate zones was proposed on the basis of the weather influence on pavement deterioration. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Science and Innovation, grant number RTC-2017-6148-7, with the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pavement deterioration es_ES
dc.subject Pavement surface distress es_ES
dc.subject Pavement performance model es_ES
dc.subject Pavement structure es_ES
dc.subject Weather es_ES
dc.subject Traffic es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12229717 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RTC-2017-6148-7-AR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation Llopis-Castelló, D.; García-Segura, T.; Montalbán-Domingo, L.; Sanz-Benlloch, MA.; Pellicer, E. (2020). Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability. 12(22):1-20. https://doi.org/10.3390/su12229717 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12229717 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 22 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\422152 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Hajj, E. Y., Loria, L., & Sebaaly, P. E. (2010). Performance Evaluation of Asphalt Pavement Preservation Activities. Transportation Research Record: Journal of the Transportation Research Board, 2150(1), 36-46. doi:10.3141/2150-05 es_ES
dc.description.references Santero, N. J., & Horvath, A. (2009). Global warming potential of pavements. Environmental Research Letters, 4(3), 034011. doi:10.1088/1748-9326/4/3/034011 es_ES
dc.description.references Pérez-Acebo, H., Linares-Unamunzaga, A., Abejón, R., & Rojí, E. (2018). Research Trends in Pavement Management during the First Years of the 21st Century: A Bibliometric Analysis during the 2000–2013 Period. Applied Sciences, 8(7), 1041. doi:10.3390/app8071041 es_ES
dc.description.references Prozzi, J. A., & Madanat, S. M. (2004). Development of Pavement Performance Models by Combining Experimental and Field Data. Journal of Infrastructure Systems, 10(1), 9-22. doi:10.1061/(asce)1076-0342(2004)10:1(9) es_ES
dc.description.references Ragnoli, A., De Blasiis, M., & Di Benedetto, A. (2018). Pavement Distress Detection Methods: A Review. Infrastructures, 3(4), 58. doi:10.3390/infrastructures3040058 es_ES
dc.description.references Osorio, A., Chamorro, A., Tighe, S., & Videla, C. (2014). Calibration and Validation of Condition Indicator for Managing Urban Pavement Networks. Transportation Research Record: Journal of the Transportation Research Board, 2455(1), 28-36. doi:10.3141/2455-04 es_ES
dc.description.references Loprencipe, G., Pantuso, A., & Di Mascio, P. (2017). Sustainable Pavement Management System in Urban Areas Considering the Vehicle Operating Costs. Sustainability, 9(3), 453. doi:10.3390/su9030453 es_ES
dc.description.references LTPP Data Analysis: Factors Affecting Pavement Smoothness. NCHRP Web Document 40http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w40-a.pdf es_ES
dc.description.references Arambula, E., George, R., Xiong, W., & Hall, G. (2011). Development and Validation of Pavement Performance Models for the State of Maryland. Transportation Research Record: Journal of the Transportation Research Board, 2225(1), 25-31. doi:10.3141/2225-04 es_ES
dc.description.references Meegoda, J. N., & Gao, S. (2014). Roughness Progression Model for Asphalt Pavements Using Long-Term Pavement Performance Data. Journal of Transportation Engineering, 140(8), 04014037. doi:10.1061/(asce)te.1943-5436.0000682 es_ES
dc.description.references Pérez-Acebo, H., Mindra, N., Railean, A., & Rojí, E. (2017). Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal of Pavement Engineering, 20(7), 830-843. doi:10.1080/10298436.2017.1353390 es_ES
dc.description.references Osorio-Lird, A., Chamorro, A., Videla, C., Tighe, S., & Torres-Machi, C. (2017). Application of Markov chains and Monte Carlo simulations for developing pavement performance models for urban network management. Structure and Infrastructure Engineering, 14(9), 1169-1181. doi:10.1080/15732479.2017.1402064 es_ES
dc.description.references Pérez-Acebo, H., Gonzalo-Orden, H., Findley, D. J., & Rojí, E. (2020). A skid resistance prediction model for an entire road network. Construction and Building Materials, 262, 120041. doi:10.1016/j.conbuildmat.2020.120041 es_ES
dc.description.references Pérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., & Gonzalo-Orden, H. (2020). IRI Performance Models for Flexible Pavements in Two-Lane Roads until First Maintenance and/or Rehabilitation Work. Coatings, 10(2), 97. doi:10.3390/coatings10020097 es_ES
dc.description.references Dong, Q., Huang, B., & Richards, S. H. (2015). Calibration and Application of Treatment Performance Models in a Pavement Management System in Tennessee. Journal of Transportation Engineering, 141(2), 04014076. doi:10.1061/(asce)te.1943-5436.0000738 es_ES
dc.description.references Hassan, R., Lin, O., & Thananjeyan, A. (2015). A comparison between three approaches for modelling deterioration of five pavement surfaces. International Journal of Pavement Engineering, 18(1), 26-35. doi:10.1080/10298436.2015.1030744 es_ES
dc.description.references Pérez-Acebo, H., Gonzalo-Orden, H., & Rojí, E. (2019). Skid resistance prediction for new two-lane roads. Proceedings of the Institution of Civil Engineers - Transport, 172(5), 264-273. doi:10.1680/jtran.17.00045 es_ES
dc.description.references Ziari, H., Maghrebi, M., Ayoubinejad, J., & Waller, S. T. (2016). Prediction of Pavement Performance: Application of Support Vector Regression with Different Kernels. Transportation Research Record: Journal of the Transportation Research Board, 2589(1), 135-145. doi:10.3141/2589-15 es_ES
dc.description.references Pérez-Acebo, H., Bejan, S., & Gonzalo-Orden, H. (2017). Transition Probability Matrices for Flexible Pavement Deterioration Models with Half-Year Cycle Time. International Journal of Civil Engineering, 16(9), 1045-1056. doi:10.1007/s40999-017-0254-z es_ES
dc.description.references García-Segura, T., Montalbán-Domingo, L., Llopis-Castelló, D., Lepech, M. D., Sanz, M. A., & Pellicer, E. (2020). Incorporating pavement deterioration uncertainty into pavement management optimization. International Journal of Pavement Engineering, 1-12. doi:10.1080/10298436.2020.1837827 es_ES
dc.description.references Qiao, Y., Flintsch, G. W., Dawson, A. R., & Parry, T. (2013). Examining Effects of Climatic Factors on Flexible Pavement Performance and Service Life. Transportation Research Record: Journal of the Transportation Research Board, 2349(1), 100-107. doi:10.3141/2349-12 es_ES
dc.description.references Mohd Hasan, M. R., Hiller, J. E., & You, Z. (2015). Effects of mean annual temperature and mean annual precipitation on the performance of flexible pavement using ME design. International Journal of Pavement Engineering, 17(7), 647-658. doi:10.1080/10298436.2015.1019504 es_ES
dc.description.references Anastasopoulos, P. C., & Mannering, F. L. (2015). Analysis of Pavement Overlay and Replacement Performance Using Random Parameters Hazard-Based Duration Models. Journal of Infrastructure Systems, 21(1), 04014024. doi:10.1061/(asce)is.1943-555x.0000208 es_ES
dc.description.references Alaswadko, N., & Hassan, R. (2016). Rutting progression models for light duty pavements. International Journal of Pavement Engineering, 19(1), 37-47. doi:10.1080/10298436.2016.1155123 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem