- -

Energy efficiency and GHG emissions mapping of buildings for decision-making processes against climate change at local level

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Energy efficiency and GHG emissions mapping of buildings for decision-making processes against climate change at local level

Show full item record

Lorenzo-Sáez, E.; Oliver Villanueva, JV.; Coll-Aliaga, E.; Lemus Zúñiga, LG.; Lerma Arce, V.; Reig Fabado, A. (2020). Energy efficiency and GHG emissions mapping of buildings for decision-making processes against climate change at local level. Sustainability. 12(7):1-17. https://doi.org/10.3390/su12072982

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172594

Files in this item

Item Metadata

Title: Energy efficiency and GHG emissions mapping of buildings for decision-making processes against climate change at local level
Author: Lorenzo-Sáez, Edgar Oliver Villanueva, José Vicente Coll-Aliaga, Eloína Lemus Zúñiga, Lenin Guillermo LERMA ARCE, VICTORIA Reig Fabado, Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria
Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Issued date:
Abstract:
[EN] Buildings have become a key source of greenhouse gas (GHG) emissions due to the consumption of primary energy, especially when used to achieve thermal comfort conditions. In addition, buildings play a key role for ...[+]
Subjects: Energy efficiency , Buildings , GHG emissions , Climate change , GIS , INSPIRE directive , Decision-making tool
Copyrigths: Reconocimiento (by)
Source:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su12072982
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/su12072982
Project ID:
info:eu-repo/grantAgreement/AVI//INNEST00%2F18%2F005/
Thanks:
This work was supported by the City Council of Quart de Poblet (Valencia, Spain).
Type: Artículo

References

2050 Long-Term Strategy https://ec.europa.eu/clima/policies/strategies/2050_en

Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), 65-78. doi:10.1016/j.ufug.2004.09.001

Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159(8-9), 2078-2087. doi:10.1016/j.envpol.2011.01.010 [+]
2050 Long-Term Strategy https://ec.europa.eu/clima/policies/strategies/2050_en

Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3(2), 65-78. doi:10.1016/j.ufug.2004.09.001

Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159(8-9), 2078-2087. doi:10.1016/j.envpol.2011.01.010

Zhao, M., Kong, Z., Escobedo, F. J., & Gao, J. (2010). Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. Journal of Environmental Management, 91(4), 807-813. doi:10.1016/j.jenvman.2009.10.010

McPherson, E. G., Scott, K. I., & Simpson, J. R. (1998). Estimating cost effectiveness of residential yard trees for improving air quality in Sacramento, California, using existing models. Atmospheric Environment, 32(1), 75-84. doi:10.1016/s1352-2310(97)00180-5

Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116(3), 381-389. doi:10.1016/s0269-7491(01)00214-7

Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3-4), 115-123. doi:10.1016/j.ufug.2006.01.007

Energy ec.europa.eu/energy/efficiency/buildings/buildings_en.htm

Gouldson, A., Colenbrander, S., Sudmant, A., Papargyropoulou, E., Kerr, N., McAnulla, F., & Hall, S. (2016). Cities and climate change mitigation: Economic opportunities and governance challenges in Asia. Cities, 54, 11-19. doi:10.1016/j.cities.2015.10.010

Gouldson, A., Colenbrander, S., Sudmant, A., McAnulla, F., Kerr, N., Sakai, P., … Kuylenstierna, J. (2015). Exploring the economic case for climate action in cities. Global Environmental Change, 35, 93-105. doi:10.1016/j.gloenvcha.2015.07.009

Wilson, E. (2006). Adapting to Climate Change at the Local Level: The Spatial Planning Response. Local Environment, 11(6), 609-625. doi:10.1080/13549830600853635

Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., & Djurovic-Petrovic, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment, 45(7), 1683-1697. doi:10.1016/j.buildenv.2010.01.021

Mastrucci, A., Baume, O., Stazi, F., & Leopold, U. (2014). Estimating energy savings for the residential building stock of an entire city: A GIS-based statistical downscaling approach applied to Rotterdam. Energy and Buildings, 75, 358-367. doi:10.1016/j.enbuild.2014.02.032

Evola, G., Fichera, A., Gagliano, A., Marletta, L., Nocera, F., Pagano, A., & Palermo, V. (2016). Application of a Mapping tool to Plan Energy Saving at a Neighborhood Scale. Energy Procedia, 101, 137-144. doi:10.1016/j.egypro.2016.11.018

Nouvel, R., Mastrucci, A., Leopold, U., Baume, O., Coors, V., & Eicker, U. (2015). Combining GIS-based statistical and engineering urban heat consumption models: Towards a new framework for multi-scale policy support. Energy and Buildings, 107, 204-212. doi:10.1016/j.enbuild.2015.08.021

Bentzen, J., & Engsted, T. (2001). A revival of the autoregressive distributed lag model in estimating energy demand relationships. Energy, 26(1), 45-55. doi:10.1016/s0360-5442(00)00052-9

Fonseca, J. A., & Schlueter, A. (2015). Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, 142, 247-265. doi:10.1016/j.apenergy.2014.12.068

Caputo, P., Costa, G., & Ferrari, S. (2013). A supporting method for defining energy strategies in the building sector at urban scale. Energy Policy, 55, 261-270. doi:10.1016/j.enpol.2012.12.006

Theodoridou, I., Karteris, M., Mallinis, G., Papadopoulos, A. M., & Hegger, M. (2012). Assessment of retrofitting measures and solar systems’ potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renewable and Sustainable Energy Reviews, 16(8), 6239-6261. doi:10.1016/j.rser.2012.03.075

Howard, B., Parshall, L., Thompson, J., Hammer, S., Dickinson, J., & Modi, V. (2012). Spatial distribution of urban building energy consumption by end use. Energy and Buildings, 45, 141-151. doi:10.1016/j.enbuild.2011.10.061

Heiple, S., & Sailor, D. J. (2008). Using building energy simulation and geospatial modeling techniques to determine high resolution building sector energy consumption profiles. Energy and Buildings, 40(8), 1426-1436. doi:10.1016/j.enbuild.2008.01.005

CALENER-VYP: Viviendas y Edificios Terciarios Pequeños y Medianos. Manual de Usuario https://www.idae.es/uploads/documentos/documentos_CALENER_05_VYP_Manual_Usuario_A2009_A_4c6978f8.pdf

Kampelis, N., Ferrante, A., Kolokotsa, D., Gobakis, K., Standardi, L., & Cristalli, C. (2017). Thermal comfort evaluation in HVAC Demand Response control. Energy Procedia, 134, 675-682. doi:10.1016/j.egypro.2017.09.587

Diakaki, C., Grigoroudis, E., Kabelis, N., Kolokotsa, D., Kalaitzakis, K., & Stavrakakis, G. (2010). A multi-objective decision model for the improvement of energy efficiency in buildings. Energy, 35(12), 5483-5496. doi:10.1016/j.energy.2010.05.012

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record