- -

Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agüero, Ángel es_ES
dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Garcia-Sanoguera, David es_ES
dc.contributor.author Fenollar, Octavio es_ES
dc.contributor.author Torres Giner, Sergio es_ES
dc.date.accessioned 2021-09-16T03:31:48Z
dc.date.available 2021-09-16T03:31:48Z
dc.date.issued 2020-01-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/172596
dc.description.abstract [EN] This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy. es_ES
dc.description.sponsorship This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject PLA es_ES
dc.subject Flax es_ES
dc.subject Multi-functionalized vegetable oils es_ES
dc.subject Green composites es_ES
dc.subject Waste valorization es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12020652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IJCI-2016-29675/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097249-B-C21/ES/ENVASE ACTIVO MULTICAPA TERMOCONFORMABLE DE ALTA BARRERA BASADO EN BIOECONOMIA CIRCULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Agüero, Á.; Lascano-Aimacaña, DS.; Garcia-Sanoguera, D.; Fenollar, O.; Torres Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability. 12(2):1-24. https://doi.org/10.3390/su12020652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12020652 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\427471 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M., Aguiló-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 9(8), 1492. doi:10.3390/su9081492 es_ES
dc.description.references Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571 es_ES
dc.description.references Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 es_ES
dc.description.references Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:4<351::aid-adv6>3.0.co;2-x es_ES
dc.description.references Ndazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13 es_ES
dc.description.references Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588 es_ES
dc.description.references Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. Critical Reviews in Food Science and Nutrition, 51(3), 210-222. doi:10.1080/10408390903537241 es_ES
dc.description.references Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w es_ES
dc.description.references Jhala, A. J., Weselake, R. J., & Hall, L. M. (2009). Genetically Engineered Flax: Potential Benefits, Risks, Regulations, and Mitigation of Transgene Movement. Crop Science, 49(6), 1943-1954. doi:10.2135/cropsci2009.05.0251 es_ES
dc.description.references Crops http://www.fao.org/faostat/en/#data/QC es_ES
dc.description.references Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897 es_ES
dc.description.references Wool, R. P. (2005). POLYMERS AND COMPOSITE RESINS FROM PLANT OILS. Bio-Based Polymers and Composites, 56-113. doi:10.1016/b978-012763952-9/50005-8 es_ES
dc.description.references Samarth, N. B., & Mahanwar, P. A. (2015). Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. doi:10.4236/ojopm.2015.51001 es_ES
dc.description.references Balanuca, B., Ghebaur, A., Stan, R., Vuluga, D. M., Vasile, E., & Iovu, H. (2018). New hybrid materials based on double-functionalized linseed oil and halloysite. Polymers for Advanced Technologies, 29(6), 1744-1752. doi:10.1002/pat.4279 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Mahendran, A. R., Wuzella, G., Aust, N., Kandelbauer, A., & Müller, U. (2012). Photocrosslinkable modified vegetable oil based resin for wood surface coating application. Progress in Organic Coatings, 74(4), 697-704. doi:10.1016/j.porgcoat.2011.09.027 es_ES
dc.description.references Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908 es_ES
dc.description.references Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208 es_ES
dc.description.references Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3 es_ES
dc.description.references Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017 es_ES
dc.description.references Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204 es_ES
dc.description.references Keener, T. ., Stuart, R. ., & Brown, T. . (2004). Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing, 35(3), 357-362. doi:10.1016/j.compositesa.2003.09.014 es_ES
dc.description.references Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369-375. doi:10.1016/j.compstruct.2006.02.016 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789 es_ES
dc.description.references Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779 es_ES
dc.description.references Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335-2340. doi:10.1007/s10965-011-9646-y es_ES
dc.description.references Harmia, T., & Friedrich, K. (1995). Fracture toughness and failure mechanisms in unreinforced and long-glass-fibre-reinforced PA66/PP blends. Composites Science and Technology, 53(4), 423-430. doi:10.1016/0266-3538(95)00031-3 es_ES
dc.description.references Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917 es_ES
dc.description.references Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001 es_ES
dc.description.references Hindryckx, F., Dubois, P., Patin, M., Jérôme, R., Teyssié, P., & Marti, M. G. (1995). Interfacial adhesion in polyethylene–kaolin composites: Improvement by maleic anhydride-grafted polyethylene. Journal of Applied Polymer Science, 56(9), 1093-1105. doi:10.1002/app.1995.070560909 es_ES
dc.description.references Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022 es_ES
dc.description.references Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., & Sineiro, J. (2010). FLAXSEED AS A SOURCE OF FUNCTIONAL INGREDIENTS. Journal of soil science and plant nutrition, 10(3). doi:10.4067/s0718-95162010000100010 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039 es_ES
dc.description.references Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., … Chen, L. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106(1), 95-101. doi:10.1016/j.jfoodeng.2011.04.021 es_ES
dc.description.references Lourdin, D., Bizot, H., & Colonna, P. (1997). ?Antiplasticization? in starch-glycerol films? Journal of Applied Polymer Science, 63(8), 1047-1053. doi:10.1002/(sici)1097-4628(19970222)63:8<1047::aid-app11>3.0.co;2-3 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002 es_ES
dc.description.references Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971 es_ES
dc.description.references Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022 es_ES
dc.description.references Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110 es_ES
dc.description.references Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024 es_ES
dc.description.references Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283 es_ES
dc.description.references Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924 es_ES
dc.description.references MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084 es_ES
dc.description.references Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171h es_ES
dc.description.references Melendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152 es_ES
dc.description.references Samal, S., Stuchlík, M., & Petrikova, I. (2017). Thermal behavior of flax and jute reinforced in matrix acrylic composite. Journal of Thermal Analysis and Calorimetry, 131(2), 1035-1040. doi:10.1007/s10973-017-6662-0 es_ES
dc.description.references Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 104, 30-42. doi:10.1016/j.ijbiomac.2017.05.184 es_ES
dc.description.references Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627 es_ES
dc.description.references Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070 es_ES
dc.description.references Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208 es_ES
dc.description.references Davis, E. M., Minelli, M., Baschetti, M. G., Sarti, G. C., & Elabd, Y. A. (2012). Nonequilibrium Sorption of Water in Polylactide. Macromolecules, 45(18), 7486-7494. doi:10.1021/ma301484u es_ES
dc.description.references Ning, J., Nguyen, V., Huang, Y., Hartwig, K. T., & Liang, S. Y. (2018). Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. The International Journal of Advanced Manufacturing Technology, 99(5-8), 1131-1140. doi:10.1007/s00170-018-2508-6 es_ES
dc.description.references Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building Materials, 79, 97-103. doi:10.1016/j.conbuildmat.2015.01.039 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem