- -

Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets

Mostrar el registro completo del ítem

Calabuig, JM.; Falciani, H.; Sánchez Pérez, EA. (2020). Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets. Neurocomputing. 398:172-184. https://doi.org/10.1016/j.neucom.2020.02.052

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/172597

Ficheros en el ítem

Metadatos del ítem

Título: Dreaming machine learning: Lipschitz extensions for reinforcement learning on financial markets
Autor: Calabuig, J. M. Falciani, H. Sánchez Pérez, Enrique Alfonso
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We consider a quasi-metric topological structure for the construction of a new reinforcement learning model in the framework of financial markets. It is based on a Lipschitz type extension of reward functions defined ...[+]
Palabras clave: Pseudo-metric , Reinforcement learning , Lipschitz extension , Mathematical economics , Financial market , Model
Derechos de uso: Reserva de todos los derechos
Fuente:
Neurocomputing. (issn: 0925-2312 )
DOI: 10.1016/j.neucom.2020.02.052
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.neucom.2020.02.052
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2016-77054-C2-1-P/ES/ANALISIS NO LINEAL, INTEGRACION VECTORIAL Y APLICACIONES EN CIENCIAS DE LA INFORMACION/
Agradecimientos:
This work was supported by the Ministerio de Ciencia, Innovacion y Universidades, Agencial Estatal de Investigaciones and FEDER (Spain) (grant number MTM2016-77054-C2-1-P.)
Tipo: Artículo

References

Aliprantis, C., & Burkinshaw, O. (2003). Locally Solid Riesz Spaces with Applications to Economics. Mathematical Surveys and Monographs. doi:10.1090/surv/105

Almahdi, S., & Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87, 267-279. doi:10.1016/j.eswa.2017.06.023

Aronsson, G. (1967). Extension of functions satisfying lipschitz conditions. Arkiv för Matematik, 6(6), 551-561. doi:10.1007/bf02591928 [+]
Aliprantis, C., & Burkinshaw, O. (2003). Locally Solid Riesz Spaces with Applications to Economics. Mathematical Surveys and Monographs. doi:10.1090/surv/105

Almahdi, S., & Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown. Expert Systems with Applications, 87, 267-279. doi:10.1016/j.eswa.2017.06.023

Aronsson, G. (1967). Extension of functions satisfying lipschitz conditions. Arkiv för Matematik, 6(6), 551-561. doi:10.1007/bf02591928

Bekiros, S. D. (2010). Heterogeneous trading strategies with adaptive fuzzy Actor–Critic reinforcement learning: A behavioral approach. Journal of Economic Dynamics and Control, 34(6), 1153-1170. doi:10.1016/j.jedc.2010.01.015

Bekiros, S. D. (2015). Heuristic learning in intraday trading under uncertainty. Journal of Empirical Finance, 30, 34-49. doi:10.1016/j.jempfin.2014.11.002

Bertoluzzo, F., & Corazza, M. (2012). Testing Different Reinforcement Learning Configurations for Financial Trading: Introduction and Applications. Procedia Economics and Finance, 3, 68-77. doi:10.1016/s2212-5671(12)00122-0

Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194-211. doi:10.1016/j.eswa.2016.02.006

Chen, Y., & Hao, Y. (2017). A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Systems with Applications, 80, 340-355. doi:10.1016/j.eswa.2017.02.044

Chong, E., Han, C., & Park, F. C. (2017). Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems with Applications, 83, 187-205. doi:10.1016/j.eswa.2017.04.030

Das, S. P., & Padhy, S. (2015). A novel hybrid model using teaching–learning-based optimization and a support vector machine for commodity futures index forecasting. International Journal of Machine Learning and Cybernetics, 9(1), 97-111. doi:10.1007/s13042-015-0359-0

Defoort, M., Polyakov, A., Demesure, G., Djemai, M., & Veluvolu, K. (2015). Leader‐follower fixed‐time consensus for multi‐agent systems with unknown non‐linear inherent dynamics. IET Control Theory & Applications, 9(14), 2165-2170. doi:10.1049/iet-cta.2014.1301

Dempster, M. A. H., & Leemans, V. (2006). An automated FX trading system using adaptive reinforcement learning. Expert Systems with Applications, 30(3), 543-552. doi:10.1016/j.eswa.2005.10.012

Deng, Y., Bao, F., Kong, Y., Ren, Z., & Dai, Q. (2017). Deep Direct Reinforcement Learning for Financial Signal Representation and Trading. IEEE Transactions on Neural Networks and Learning Systems, 28(3), 653-664. doi:10.1109/tnnls.2016.2522401

M. Dong, X. Yang, Y. Wu, J.H. Xue, Metric learning via maximizing the Lipschitz margin ratio, arXiv:1802.03464 (2018) 1–12.

Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and Gaussian processes for relational reinforcement learning. Machine Learning, 64(1-3), 91-119. doi:10.1007/s10994-006-8258-y

Dunis, C. L., Rosillo, R., de la Fuente, D., & Pino, R. (2012). Forecasting IBEX-35 moves using support vector machines. Neural Computing and Applications, 23(1), 229-236. doi:10.1007/s00521-012-0821-9

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669. doi:10.1016/j.ejor.2017.11.054

Gerlein, E. A., McGinnity, M., Belatreche, A., & Coleman, S. (2016). Evaluating machine learning classification for financial trading: An empirical approach. Expert Systems with Applications, 54, 193-207. doi:10.1016/j.eswa.2016.01.018

Gottlieb, L.-A., Kontorovich, A., & Krauthgamer, R. (2014). Efficient Classification for Metric Data. IEEE Transactions on Information Theory, 60(9), 5750-5759. doi:10.1109/tit.2014.2339840

Guo, X.-G., Wang, J. L., Liao, F., & Teo, R. S. H. (2016). Distributed adaptive control for vehicular platoon with unknown dead-zone inputs and velocity/acceleration disturbances. International Journal of Robust and Nonlinear Control, 27(16), 2961-2981. doi:10.1002/rnc.3720

Jeong, G., & Kim, H. Y. (2019). Improving financial trading decisions using deep Q-learning: Predicting the number of shares, action strategies, and transfer learning. Expert Systems with Applications, 117, 125-138. doi:10.1016/j.eswa.2018.09.036

Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and models. International Review of Financial Analysis, 33, 171-185. doi:10.1016/j.irfa.2014.02.006

Lahmiri, S. (2016). A variational mode decompoisition approach for analysis and forecasting of economic and financial time series. Expert Systems with Applications, 55, 268-273. doi:10.1016/j.eswa.2016.02.025

Lee, T. K., Cho, J. H., Kwon, D. S., & Sohn, S. Y. (2019). Global stock market investment strategies based on financial network indicators using machine learning techniques. Expert Systems with Applications, 117, 228-242. doi:10.1016/j.eswa.2018.09.005

Lee, J. W., Park, J., O, J., Lee, J., & Hong, E. (2007). A Multiagent Approach to $Q$-Learning for Daily Stock Trading. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 37(6), 864-877. doi:10.1109/tsmca.2007.904825

Li, Y., Jiang, W., Yang, L., & Wu, T. (2018). On neural networks and learning systems for business computing. Neurocomputing, 275, 1150-1159. doi:10.1016/j.neucom.2017.09.054

Liu, F., & Wang, J. (2012). Fluctuation prediction of stock market index by Legendre neural network with random time strength function. Neurocomputing, 83, 12-21. doi:10.1016/j.neucom.2011.09.033

LOUGHRAN, T., & MCDONALD, B. (2016). Textual Analysis in Accounting and Finance: A Survey. Journal of Accounting Research, 54(4), 1187-1230. doi:10.1111/1475-679x.12123

Lu, C.-J., Lee, T.-S., & Chiu, C.-C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115-125. doi:10.1016/j.dss.2009.02.001

Mahmoudi, N., Docherty, P., & Moscato, P. (2018). Deep neural networks understand investors better. Decision Support Systems, 112, 23-34. doi:10.1016/j.dss.2018.06.002

Maringer, D., & Ramtohul, T. (2011). Regime-switching recurrent reinforcement learning for investment decision making. Computational Management Science, 9(1), 89-107. doi:10.1007/s10287-011-0131-1

McShane, E. J. (1934). Extension of range of functions. Bulletin of the American Mathematical Society, 40(12), 837-842. doi:10.1090/s0002-9904-1934-05978-0

Milman, V. A. (1999). Absolutely minimal extensions of functions on metric spaces. Sbornik: Mathematics, 190(6), 859-885. doi:10.1070/sm1999v190n06abeh000409

Moghaddam, A. H., Moghaddam, M. H., & Esfandyari, M. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science, 21(41), 89-93. doi:10.1016/j.jefas.2016.07.002

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks, 12(4), 875-889. doi:10.1109/72.935097

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., & Ngo, D. C. L. (2014). Text mining for market prediction: A systematic review. Expert Systems with Applications, 41(16), 7653-7670. doi:10.1016/j.eswa.2014.06.009

H. Park, M.K. Sim, D.G. Choi, An intelligent financial portfolio trading strategy using deep q-learning, arXiv:1907.03665 (2019) 1–39.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock market index using fusion of machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172. doi:10.1016/j.eswa.2014.10.031

Pendharkar, P. C., & Cusatis, P. (2018). Trading financial indices with reinforcement learning agents. Expert Systems with Applications, 103, 1-13. doi:10.1016/j.eswa.2018.02.032

Romaguera, S., & Sanchis, M. (2000). Semi-Lipschitz Functions and Best Approximation in Quasi-Metric Spaces. Journal of Approximation Theory, 103(2), 292-301. doi:10.1006/jath.1999.3439

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. doi:10.1016/j.neunet.2014.09.003

Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525-538. doi:10.1016/j.asoc.2018.04.024

Tkáč, M., & Verner, R. (2016). Artificial neural networks in business: Two decades of research. Applied Soft Computing, 38, 788-804. doi:10.1016/j.asoc.2015.09.040

Ticknor, J. L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501-5506. doi:10.1016/j.eswa.2013.04.013

Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83, 136-145. doi:10.1016/j.neucom.2011.12.013

Wang, B., Huang, H., & Wang, X. (2011). A support vector machine based MSM model for financial short-term volatility forecasting. Neural Computing and Applications, 22(1), 21-28. doi:10.1007/s00521-011-0742-z

Xiao, G., Zhang, H., Luo, Y., & Qu, Q. (2017). General value iteration based reinforcement learning for solving optimal tracking control problem of continuous–time affine nonlinear systems. Neurocomputing, 245, 114-123. doi:10.1016/j.neucom.2017.03.038

Yeh, C.-Y., Huang, C.-W., & Lee, S.-J. (2011). A multiple-kernel support vector regression approach for stock market price forecasting. Expert Systems with Applications, 38(3), 2177-2186. doi:10.1016/j.eswa.2010.08.004

Zhang, X., Hu, Y., Xie, K., Zhang, W., Su, L., & Liu, M. (2015). An evolutionary trend reversion model for stock trading rule discovery. Knowledge-Based Systems, 79, 27-35. doi:10.1016/j.knosys.2014.08.010

Zhang, J., & Maringer, D. (2015). Using a Genetic Algorithm to Improve Recurrent Reinforcement Learning for Equity Trading. Computational Economics, 47(4), 551-567. doi:10.1007/s10614-015-9490-y

Zhiqiang, G., Huaiqing, W., & Quan, L. (2012). Financial time series forecasting using LPP and SVM optimized by PSO. Soft Computing, 17(5), 805-818. doi:10.1007/s00500-012-0953-y

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem